Applications of deep learning for mobile malware detection: A systematic literature review

[1]  Victor Chang,et al.  Mobile malware attacks: Review, taxonomy & future directions , 2019, Future Gener. Comput. Syst..

[2]  Xin Li,et al.  DeepAM: a heterogeneous deep learning framework for intelligent malware detection , 2018, Knowledge and Information Systems.

[3]  S. Sitharama Iyengar,et al.  A Survey on Malware Detection Using Data Mining Techniques , 2017, ACM Comput. Surv..

[4]  Yong Fan,et al.  A Systematic Literature Review of Android Malware Detection Using Static Analysis , 2020, IEEE Access.

[5]  Zhenlong Yuan,et al.  DroidDetector: Android Malware Characterization and Detection Using Deep Learning , 2016 .

[6]  Feng Gu,et al.  A multi-level deep learning system for malware detection , 2019, Expert Syst. Appl..

[7]  Mei-Ling Shyu,et al.  A Survey on Deep Learning , 2018, ACM Comput. Surv..

[8]  Changfu Zong,et al.  Trajectory Planning for Automated Parking Systems Using Deep Reinforcement Learning , 2020 .

[9]  Louis-Philippe Morency,et al.  Multimodal Machine Learning: A Survey and Taxonomy , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Nor Badrul Anuar,et al.  The rise of "malware": Bibliometric analysis of malware study , 2016, J. Netw. Comput. Appl..

[11]  Kuldeep Kumar,et al.  Empirical analysis of change metrics for software fault prediction , 2018, Comput. Electr. Eng..

[12]  Shengwei Tian,et al.  AMalNet: A deep learning framework based on graph convolutional networks for malware detection , 2020, Comput. Secur..

[13]  Daniel S. Berman,et al.  A Survey of Deep Learning Methods for Cyber Security , 2019, Inf..

[14]  Dong Liu,et al.  Byte-level malware classification based on markov images and deep learning , 2020, Comput. Secur..

[15]  Pearl Brereton,et al.  Systematic literature reviews in software engineering - A systematic literature review , 2009, Inf. Softw. Technol..

[16]  Fabio Martinelli,et al.  Evaluating Convolutional Neural Network for Effective Mobile Malware Detection , 2017, KES.

[17]  Kai Petersen,et al.  Guidelines for conducting systematic mapping studies in software engineering: An update , 2015, Inf. Softw. Technol..

[18]  Ali A. Ghorbani,et al.  DeNNeS: deep embedded neural network expert system for detecting cyber attacks , 2020, Neural Computing and Applications.

[19]  Mohammad Nauman,et al.  Deep neural architectures for large scale android malware analysis , 2017, Cluster Computing.

[20]  Aziz Alotaibi,et al.  Identifying Malicious Software Using Deep Residual Long-Short Term Memory , 2019, IEEE Access.

[21]  Ainuddin Wahid Abdul Wahab,et al.  A review on feature selection in mobile malware detection , 2015, Digit. Investig..

[22]  Sakir Sezer,et al.  DL-Droid: Deep learning based android malware detection using real devices , 2019, Comput. Secur..

[23]  Georgios Kambourakis,et al.  A Survey on Mobile Malware Detection Techniques , 2020, IEICE Trans. Inf. Syst..

[24]  Eul Gyu Im,et al.  A Multimodal Deep Learning Method for Android Malware Detection Using Various Features , 2019, IEEE Transactions on Information Forensics and Security.

[25]  Roberto Baldoni,et al.  Survey on the Usage of Machine Learning Techniques for Malware Analysis , 2017, Comput. Secur..

[26]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[27]  Pierre Alliez,et al.  Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Miao Zhang,et al.  A Review of Android Malware Detection Approaches Based on Machine Learning , 2020, IEEE Access.

[29]  Bart Baesens,et al.  Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings , 2008, IEEE Transactions on Software Engineering.

[30]  Long Nguyen-Vu,et al.  Android Fragmentation in Malware Detection , 2019, Comput. Secur..

[31]  Bedir Tekinerdogan,et al.  Obstacles and features of Farm Management Information Systems: A systematic literature review , 2019, Comput. Electron. Agric..

[32]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[33]  Ali A. Ghorbani,et al.  Application of deep learning to cybersecurity: A survey , 2019, Neurocomputing.

[34]  Xilong Qu,et al.  DroidDeep: using Deep Belief Network to characterize and detect android malware , 2020, Soft Comput..

[35]  Mauro Conti,et al.  Deep and broad URL feature mining for android malware detection , 2020, Inf. Sci..

[36]  Nazanin Bakhshinejad,et al.  Parallel-CNN network for malware detection , 2020, IET Inf. Secur..

[37]  Abdelouahid Derhab,et al.  MalDozer: Automatic framework for android malware detection using deep learning , 2018, Digit. Investig..

[38]  Andreas Kamilaris,et al.  Deep learning in agriculture: A survey , 2018, Comput. Electron. Agric..

[39]  Wei Wang,et al.  Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network , 2018, Journal of Ambient Intelligence and Humanized Computing.

[40]  Shengwei Tian,et al.  Combining multi-features with a neural joint model for Android malware detection , 2020, Journal of Intelligent & Fuzzy Systems.

[41]  Jinjun Chen,et al.  Detection of Malicious Code Variants Based on Deep Learning , 2018, IEEE Transactions on Industrial Informatics.

[42]  Ming Yang,et al.  A Survey of Multi-View Representation Learning , 2019, IEEE Transactions on Knowledge and Data Engineering.

[43]  Mark Stamp,et al.  An analysis of Android adware , 2018, Journal of Computer Virology and Hacking Techniques.

[44]  Kuan-Ching Li,et al.  A novel approach for mobile malware classification and detection in Android systems , 2018, Multimedia Tools and Applications.

[45]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[46]  Hamed Haddadi,et al.  Deep Learning in Mobile and Wireless Networking: A Survey , 2018, IEEE Communications Surveys & Tutorials.

[47]  Pearl Brereton,et al.  Systematic literature reviews in software engineering - A tertiary study , 2010, Inf. Softw. Technol..

[48]  Visalakshi Palanisamy,et al.  RETRACTED ARTICLE: A novel permission ranking system for android malware detection—the permission grader , 2020, Journal of Ambient Intelligence and Humanized Computing.

[49]  Pearl Brereton,et al.  Reporting systematic reviews: Some lessons from a tertiary study , 2017, Inf. Softw. Technol..

[50]  Banu Diri,et al.  Metrics-Driven Software Quality Prediction Without Prior Fault Data , 2010 .

[51]  Sakir Sezer,et al.  You Could Be Mine(d): The Rise of Cryptojacking , 2020, IEEE Security & Privacy.

[52]  Shojafar Mohammad,et al.  SysDroid: a dynamic ML-based android malware analyzer using system call traces , 2020, Cluster Computing.

[53]  Francesco Palmieri,et al.  Malware detection in mobile environments based on Autoencoders and API-images , 2020, J. Parallel Distributed Comput..

[54]  David Camacho,et al.  CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains , 2018, Eng. Appl. Artif. Intell..

[55]  Shu-Tao Xia,et al.  Back-propagation neural network on Markov chains from system call sequences: a new approach for detecting Android malware with system call sequences , 2017, IET Inf. Secur..

[56]  Daniel Gibert,et al.  The rise of machine learning for detection and classification of malware: Research developments, trends and challenges , 2020, J. Netw. Comput. Appl..

[57]  Deepti Mishra,et al.  Test case prioritization: a systematic mapping study , 2012, Software Quality Journal.

[58]  Antonella Santone,et al.  Deep learning for image-based mobile malware detection , 2020, Journal of Computer Virology and Hacking Techniques.

[59]  Yuval Elovici,et al.  Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey , 2009, Inf. Secur. Tech. Rep..

[60]  Elsayed A. Sallam,et al.  Deep Belief Networks-based framework for malware detection in Android systems , 2018, Alexandria Engineering Journal.

[61]  Jemal H. Abawajy,et al.  An adaptive framework against android privilege escalation threats using deep learning and semi-supervised approaches , 2020, Appl. Soft Comput..

[62]  Refik Samet,et al.  A Comprehensive Review on Malware Detection Approaches , 2020, IEEE Access.

[63]  Babar Shah,et al.  Android malware detection through generative adversarial networks , 2019, Transactions on Emerging Telecommunications Technologies.

[64]  K. P. Soman,et al.  Detecting Android malware using Long Short-term Memory (LSTM) , 2018, J. Intell. Fuzzy Syst..

[65]  Fakhri Alam Khan,et al.  Static malware detection and attribution in android byte-code through an end-to-end deep system , 2020, Future Gener. Comput. Syst..

[66]  Yuxin Ding,et al.  Malware detection based on deep learning algorithm , 2017, Neural computing & applications (Print).

[67]  Georgios Kambourakis,et al.  DDoS in the IoT: Mirai and Other Botnets , 2017, Computer.

[68]  Shou-Ching Hsiao,et al.  Malware Image Classification Using One-Shot Learning with Siamese Networks , 2019, KES.

[69]  Mingdong Tang,et al.  Dynamic API call sequence visualisation for malware classification , 2019, IET Inf. Secur..

[70]  Arun Kumar Sangaiah,et al.  Android malware detection based on system call sequences and LSTM , 2019, Multimedia Tools and Applications.

[71]  Hung-Min Sun,et al.  An Android mutation malware detection based on deep learning using visualization of importance from codes , 2019 .

[72]  Li Deng,et al.  A tutorial survey of architectures, algorithms, and applications for deep learning , 2014, APSIPA Transactions on Signal and Information Processing.

[73]  Tankut Acarman,et al.  Deep learning for effective Android malware detection using API call graph embeddings , 2020, Soft Comput..

[74]  Yuval Elovici,et al.  “Andromaly”: a behavioral malware detection framework for android devices , 2012, Journal of Intelligent Information Systems.