Modeling microstructural mechanical behavior of expansive soil at various water contents and dry densities by molecular dynamics simulation

[1]  D. Robert,et al.  A multi-component model for expansive soils with different mineral compositions , 2023, Canadian Geotechnical Journal.

[2]  Z. Yin,et al.  Investigating silica interface rate-dependent friction behavior under dry and lubricated conditions with molecular dynamics , 2023, Acta Geotechnica.

[3]  J. Kodikara,et al.  Nanoscale mechanism on lime stabilization of expansive soil , 2022, Acta Geotechnica.

[4]  J. Shao,et al.  Contribution of atomistic study to better understand water saturation effect on mechanical behavior of clayey rocks in triaxial compression , 2022, Computers and Geotechnics.

[5]  A. Zaoui,et al.  Effect of water content and structural anisotropy on tensile mechanical properties of montmorillonite using molecular dynamics , 2022, Applied Clay Science.

[6]  S. Shen,et al.  Revealing crucial effects of temperature and salinization on swelling behavior of montmorillonite , 2022, Chemical Engineering Journal.

[7]  H. Kyokawa A double structure model for hydro-mechano-chemical behavior of expansive soils based on the surface phenomena of mineral crystals , 2021, Engineering Geology.

[8]  Z. Yin,et al.  Nanoscale friction characteristics of hydrated montmorillonites using molecular dynamics , 2021 .

[9]  M. He,et al.  Investigation on Atomic Structure and Mechanical Property of Na- and Mg-Montmorillonite under High Pressure by First-Principles Calculations , 2021, Minerals.

[10]  Annan Zhou,et al.  Prediction of swelling pressure of expansive soil using an improved molecular dynamics approach combining diffuse double layer theory , 2021 .

[11]  Liping Zhu,et al.  Insight of molecular simulation to better assess deformation and failure of clay-rich rocks in compression and extension , 2021 .

[12]  G. Spagnoli,et al.  An overview on the compaction characteristics of soils by laboratory tests , 2020 .

[13]  Shuyu Sun,et al.  Swelling pressure of montmorillonite with multiple water layers at elevated temperatures and water pressures: A molecular dynamics study , 2020 .

[14]  Annan Zhou,et al.  The potential utilization of lecithin as natural gas hydrate decomposition inhibitor in oil well cement at low temperatures , 2020 .

[15]  S. Shen,et al.  A micro-mechanical model for unsaturated soils based on DEM , 2020, Computer Methods in Applied Mechanics and Engineering.

[16]  Annan Zhou,et al.  Revealing Expansion Mechanism of Cement-Stabilized Expansive Soil with Different Interlayer Cations through Molecular Dynamics Simulations , 2020, The Journal of Physical Chemistry C.

[17]  P. Delage,et al.  Macroscopic effects of nano and microscopic phenomena in clayey soils and clay rocks , 2020 .

[18]  L. Laloui,et al.  A double-structure hydromechanical constitutive model for compacted bentonite , 2019, Computers and Geotechnics.

[19]  Y. Cui,et al.  An elasto-plastic model of unsaturated soil with an explicit degree of saturation-dependent CSL , 2019, Engineering Geology.

[20]  Haldun Akoglu,et al.  User's guide to correlation coefficients , 2018, Turkish journal of emergency medicine.

[21]  Jun Zhang,et al.  Molecular dynamics simulation of hydrated Na-montmorillonite with inorganic salts addition at high temperature and high pressure , 2017 .

[22]  D. Mašín Coupled Thermohydromechanical Double-Structure Model for Expansive Soils , 2017 .

[23]  Y. Cui,et al.  Work input analysis for soils with double porosity and application to the hydromechanical modeling of unsaturated expansive clays , 2017 .

[24]  Antonio Gens Solé,et al.  Fully Coupled Thermo-Hydro-Mechanical Double-Porosity Formulation for Unsaturated Soils , 2016 .

[25]  N. Khalili,et al.  Swelling phenomena and effective stress in compacted expansive clays , 2016 .

[26]  V. Poltev,et al.  Molecular Mechanics: Principles, History, and Current Status , 2015 .

[27]  Y. Cui,et al.  Time- and density-dependent microstructure features of compacted bentonite , 2014 .

[28]  A. Cerato,et al.  Applications of SEM and ESEM in Microstructural Investigation of Shale-Weathered Expansive Soils along Swelling-Shrinkage Cycles , 2014 .

[29]  A. Kalinichev,et al.  Structural Arrangements of Isomorphic Substitutions in Smectites: Molecular Simulation of the Swelling Properties, Interlayer Structure, and Dynamics of Hydrated Cs–Montmorillonite Revisited with New Clay Models , 2014 .

[30]  H. Damme,et al.  Elastic properties of swelling clay particles at finite temperature upon hydration , 2014 .

[31]  D. Mašín Double structure hydromechanical coupling formalism and a model for unsaturated expansive clays , 2013 .

[32]  Antonio Gens,et al.  A chemo-mechanical constitutive model accounting for cation exchange in expansive clays , 2013 .

[33]  A. Whittle,et al.  Nanoscale elastic properties of montmorillonite upon water adsorption. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[34]  De’an Sun,et al.  Coupled modelling of hydro‐mechanical behaviour of unsaturated compacted expansive soils , 2012 .

[35]  Cristina Jommi,et al.  An insight into the water retention properties of compacted clayey soils , 2011 .

[36]  K. Katti,et al.  Multiscale modeling of swelling clays: A computational and experimental approach , 2009 .

[37]  Tom Schanz,et al.  Swelling pressure of a divalent‐rich bentonite: Diffuse double‐layer theory revisited , 2009 .

[38]  Yu-Jun Cui,et al.  Modelling the thermomechanical volume change behaviour of compacted expansive clays , 2009, 0904.3614.

[39]  De’an Sun,et al.  Swelling of compacted sand–bentonite mixtures , 2009 .

[40]  Paul Simms,et al.  Microstructure Investigation in Unsaturated Soils: A Review with Special Attention to Contribution of Mercury Intrusion Porosimetry and Environmental Scanning Electron Microscopy , 2008 .

[41]  F. Ulm,et al.  The nano-mechanical morphology of shale , 2008 .

[42]  Antonio Lloret,et al.  Influence of dry density and water content on the swelling of a compacted bentonite , 2008 .

[43]  G. Rutledge,et al.  Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal. 1. Isolated clay nanoplate. , 2008, The journal of physical chemistry. B.

[44]  Franz-Josef Ulm,et al.  The effect of the nanogranular nature of shale on their poroelastic behavior , 2007 .

[45]  WerrBn LonwnNsrBrN,et al.  THE DISTRIBUTION OF ALUMINUM IN THE TETRAHEDRA OF SILICATES AND ALUMINATES , 2007 .

[46]  Yu-Jun Cui,et al.  Ageing effects in a compacted bentonite: a microstructure approach , 2006 .

[47]  Antonio Gens,et al.  A double structure generalized plasticity model for expansive materials , 2005 .

[48]  Randall T. Cygan,et al.  Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field , 2004 .

[49]  J. Duplay,et al.  Swelling–shrinkage kinetics of MX80 bentonite , 2003 .

[50]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[51]  Antonio Gens,et al.  Mechanical behaviour of heavily compacted bentonite under high suction changes , 2003 .

[52]  Yu-Jun Cui,et al.  A model for the volume change behavior of heavily compacted swelling clays , 2002 .

[53]  M. Cates,et al.  Effective elastic properties of solid clays , 2001 .

[54]  Antonio Gens,et al.  Water permeability, water retention and microstructure of unsaturated compacted Boom clay , 1999 .

[55]  Antonio Gens,et al.  Modelling the mechanical behaviour of expansive clays , 1999 .

[56]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[57]  Antonio Gens,et al.  A framework for the behaviour of unsaturated expansive clays , 1992 .

[58]  M. Parrinello,et al.  Strain fluctuations and elastic constants , 1982 .

[59]  S. Guggenheim,et al.  Single crystal X-ray refinement of pyrophyllite-1Tc , 1981 .

[60]  G. Bolt Physico-Chemical Analysis of the Compressibility of Pure Clays , 1956 .

[61]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[62]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .