Computing the Physical Parameters of Rigid-Body Motion from Video

This paper presents an optimization framework for estimating the motion and underlying physical parameters of a rigid body in free flight from video. The algorithm takes a video clip of a tumbling rigid body of known shape and generates a physical simulation of the object observed in the video clip. This solution is found by optimizing the simulation parameters to best match the motion observed in the video sequence. These simulation parameters include initial positions and velocities, environment parameters like gravity direction and parameters of the camera. A global objective function computes the sum squared difference between the silhouette of the object in simulation and the silhouette obtained from video at each frame. Applications include creating interesting rigid body animations, tracking complex rigid body motions in video and estimating camera parameters from video.

[1]  Pradeep K. Khosla,et al.  Estimation of Robot Dynamics Parameters: Theory and Application , 1987 .

[2]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[3]  R. Chellappa,et al.  Passive Navigation in a partially known environment , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[4]  J. Schick,et al.  Simultaneous estimation of 3D shape and motion of objects by computer vision , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[5]  Alex Pentland,et al.  Recovery of Nonrigid Motion and Structure , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Dimitris N. Metaxas,et al.  Shape and Nonrigid Motion Estimation Through Physics-Based Synthesis , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Chris Harris,et al.  Tracking with rigid models , 1993 .

[8]  Yasuhiro Masutani,et al.  Motion estimation of unknown rigid body under no external forces and moments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[9]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[10]  B. Ghosh,et al.  A Perspective Theory for Motion and Shape Estimation in Machine Vision , 1995 .

[11]  Daniel E. Koditschek,et al.  An active visual estimator for dexterous manipulation , 1996, IEEE Trans. Robotics Autom..

[12]  Christoph Bregler,et al.  Learning and recognizing human dynamics in video sequences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Olivier D. Faugeras,et al.  3D articulated models and multi-view tracking with silhouettes , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  O. Faugeras,et al.  The Geometry of Multiple Images , 1999 .

[15]  Mark W. Spong,et al.  Vision-based control of an air hockey playing robot , 1999 .

[16]  Steven M. Seitz,et al.  Interactive manipulation of rigid body simulations , 2000, SIGGRAPH.

[17]  David A. Forsyth,et al.  Sampling plausible solutions to multi-body constraint problems , 2000, SIGGRAPH.

[18]  Pradeep K. Khosla,et al.  Motion detection and segmentation using image mosaics , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[19]  Christopher Richard Wren,et al.  Understanding expressive action , 2000 .

[20]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[21]  Steven M. Seitz,et al.  Interactive design of rigid-body simulations for computer animation , 2001 .

[22]  Olivier D. Faugeras,et al.  The geometry of multiple images - the laws that govern the formation of multiple images of a scene and some of their applications , 2001 .

[23]  Ronen Basri,et al.  3-D to 2-D Pose Determination with Regions , 1999, International Journal of Computer Vision.

[24]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.