Analyzing reversible changes in hygroscopicity of thermally modified eucalypt wood from open and closed reactor systems

[1]  M. Hughes,et al.  The influence of extractives on the sorption characteristics of Scots pine (Pinus sylvestris L.) , 2017, Journal of Materials Science.

[2]  I. Burgert,et al.  Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures , 2017, Cellulose.

[3]  E. Obataya,et al.  Reversible and irreversible dimensional changes of heat-treated wood during alternate wetting and drying , 2017, Wood Science and Technology.

[4]  S. Zelinka,et al.  Short hold times in dynamic vapor sorption measurements mischaracterize the equilibrium moisture content of wood , 2017, Wood Science and Technology.

[5]  H. Militz,et al.  Influence of process conditions on hygroscopicity and mechanical properties of European beech thermally modified in a high-pressure reactor system , 2016 .

[6]  H. Militz,et al.  Wood moisture content during the thermal modification process affects the improvement in hygroscopicity of Scots pine sapwood , 2016, Wood Science and Technology.

[7]  H. Militz,et al.  Wood moisture content during the thermal modification process affects the improvement in hygroscopicity of Scots pine sapwood , 2016, Wood Science and Technology.

[8]  J. Majka,et al.  Effects of Cyclic Changes in Relative Humidity on the Sorption Hysteresis of Thermally Modified Spruce Wood , 2016 .

[9]  H. Militz,et al.  Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system , 2016, European Journal of Wood and Wood Products.

[10]  H. Militz,et al.  Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system , 2016, European Journal of Wood and Wood Products.

[11]  E. Obataya,et al.  Effects of heating humidity on the physical properties of hydrothermally treated spruce wood , 2016, Wood Science and Technology.

[12]  L. Rautkari,et al.  The effect of wetting cycles on moisture behaviour of thermally modified Scots pine (Pinus sylvestris L.) wood , 2016, Journal of Materials Science.

[13]  M. Altgen,et al.  Quality control methods for thermally modified wood , 2015 .

[14]  L. Rautkari,et al.  Analysis of Dimensional Stability of Thermally Modified Wood Affected by Re-Wetting Cycles , 2015 .

[15]  H. Militz,et al.  Comparison of EMC and durability of heat treated wood from high versus low water vapour pressure reactor systems , 2015 .

[16]  H. Militz,et al.  One-stage thermo-hydro treatment (THT) of hardwoods: an analysis of form stability after five soaking-drying cycles , 2015 .

[17]  C. Mai,et al.  Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood , 2015 .

[18]  L. Salmén Wood morphology and properties from molecular perspectives , 2014, Annals of Forest Science.

[19]  Raili Pönni,et al.  Changes in accessibility of cellulose during kraft pulping of wood in deuterium oxide. , 2014, Carbohydrate polymers.

[20]  C. Hill,et al.  The water vapour adsorption–desorption behaviour of naturally aged Tilia cordata Mill. wood , 2013 .

[21]  Lauri Rautkari,et al.  The water vapour sorption properties of thermally modified and densified wood , 2012, Journal of Materials Science.

[22]  P. Kärenlampi,et al.  Hygroscopicity of heat-treated Norway spruce (Picea abies) wood , 2010, European Journal of Wood and Wood Products.

[23]  M. Humar,et al.  Sorption Properties of Wood Impregnated with Boron Compounds, Sodium Chloride and Glucose , 2009 .

[24]  H. Militz,et al.  Characterisation of thermally modified wood: molecular reasons for wood performance improvement , 1998, Holz als Roh- und Werkstoff.

[25]  W. Willems A Novel Economic Large-scale Production Technology for High-quality Thermally Modified Wood , 2009 .

[26]  Helena Pereira,et al.  Wood modification by heat treatment: a review. , 2009 .

[27]  Ingo Burgert,et al.  Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture , 2009 .

[28]  Harry Donald Tiemann,et al.  The Kiln Drying of Lumber: A Practical and Theoretical Treatise , 2008 .

[29]  Helena Pereira,et al.  Extractive composition and summative chemical analysis of thermally treated eucalypt wood , 2008 .

[30]  P. Kärenlampi,et al.  Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood , 2008, Journal of Wood Science.

[31]  H. Militz Processes and Properties of Thermally Modified Wood Manufactured in Europe , 2008 .

[32]  A. Rapp,et al.  Durability of thermally modified timber from industrial-scale processes in different use classes: Results from laboratory and field tests , 2007 .

[33]  R. Rowell,et al.  Determination of Dimensional Stabilization of Wood Using the Water-Soak Method , 2007 .

[34]  E. Giebeler Dimensionsstabilisierung von Holz durch eine Feuchte/Wärme/Druck-Behandlung , 1983, Holz als Roh- und Werkstoff.

[35]  A. Burmester Zur Dimensionsstabilisierung von Holz , 1975, Holz als Roh- und Werkstoff.

[36]  R. Runkel,et al.  Untersuchungen über die Heterogenität der Wassersorption der chemischen und morphologischen Komponenten verholzter Zellwände , 1956, Holz als Roh- und Werkstoff.

[37]  R. Runkel Studien über die Sorption der Holzfaser.—Erste Mitteilung: Die Sorption der Holzfaser in morphologische-chemischer Betrachtung , 1954, Holz als Roh- und Werkstoff.

[38]  B. Esteves Improvement of technological quality of eucalypt wood by heat treatment in air at 170-200ºC , 2007 .

[39]  M. Hakkou,et al.  Investigations of the reasons for fungal durability of heat-treated beech wood , 2006 .

[40]  C. Hill,et al.  Wood Modification: Chemical, Thermal and Other Processes , 2006 .

[41]  M. Boonstra,et al.  Optimisation of a two-stage heat treatment process: durability aspects , 2006, Wood Science and Technology.

[42]  P. Viitaniemi,et al.  The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C and 230 °C , 2006, Holz als Roh- und Werkstoff.

[43]  Pertti Viitaniemi,et al.  X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris L.) , 2005 .

[44]  R. Guyonnet,et al.  Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition , 2005 .

[45]  J. Weiland,et al.  Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy , 2003, Holz als Roh- und Werkstoff.

[46]  R. Alén,et al.  Thermochemical behavior of Norway spruce (Picea abies) at 180–225 °C , 2002, Wood Science and Technology.

[47]  Ayhan Demirbas,et al.  Mechanisms of liquefaction and pyrolysis reactions of biomass , 2000 .

[48]  Raimo Alén,et al.  Thermal Behavior of Scots Pine ( Pinus Sylvestris ) and Silver Birch ( Betula Pendula ) at 200-230° , 2000 .

[49]  C. Hill,et al.  The Dimensional Stabilisation of Corsican Pine Sapwood by Reaction with Carboxylic Acid Anhydrides. The Effect of Chain Length , 1996 .

[50]  A. Stamm Dimensional stabilization of wood with carbowaxes , 1956 .

[51]  Harold Tarkow,et al.  Effect of Heat Upon the Dimensional Stabilization of Wood , 1953 .

[52]  A. Stamm,et al.  Minimizing wood shrinkage and swelling : effect of heating in various gases , 1937 .