Reverse Engineering of a Fixed Wing Unmanned Aircraft 6-DoF Model for Navigation and Guidance Applications

A method for deriving the parameters of a six-degree-of-freedom (6-DoF) aircraft dynamics model by adopting reverse engineering techniques is presented. The novelty of the paper is the adaption of the 6-DoF Aircraft Dynamics Model (ADM) as a virtual sensor integrated in a low-cost navigation and guidance system designed for small Unmanned Aircraft (UA). The mass and aerodynamic properties of the JAVELIN UA are determined with the aid of an accurate 3D scanning and CAD processing. For qualitatively assessing the calculated ADM, a trajectory with high dynamics is simulated for the JAVELIN UA and compared with that of a published 6-DoF model of the AEROSONDE UA. Additionally, to confirm the validity of the approach, reverse engineering procedures are applied to a published CAD model of the AEROSONDE UA aiding to the calculation of the associated 6-DoF model parameters. A spiral descent trajectory is generated using both the published and calculated parameters of the AEROSONDE UA and a comparative analysis is performed that validates the methodology. The accurate knowledge of the ADM is then utilized in the development of a virtual sensor to augment the UA navigation and guidance system in case of primary navigation sensor outages.

[1]  Roberto Sabatini,et al.  Navigation and Guidance System Architectures for Small Unmanned Aircraft Applications , 2014 .

[2]  R. J. Poole,et al.  Aircraft Dynamics: From Modeling to Simulation , M. R. Napolitano, John Wiley and Sons, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK. 2012. 706pp. Illustrated. £49.99. ISBN 978-0-470-62667-2. , 2012, The Aeronautical Journal (1968).

[3]  Alessandro Gardi,et al.  Low-cost sensors data fusion for small size unmanned aerial vehicles navigation and guidance , 2013 .

[4]  Roberto Sabatini,et al.  A New Avionics-Based GNSS Integrity Augmentation System: Part 2 – Integrity Flags , 2013, Journal of Navigation.

[5]  Mark A. Richardson,et al.  A Low-cost Vision Based Navigation System for Small Size Unmanned Aerial Vehicle Applications , 2013 .

[6]  Alessandro Gardi,et al.  Novel Flight Management System for Real-Time 4-Dimensional Trajectory Based Operations , 2013 .

[7]  Reece A. Clothier,et al.  An innovative navigation and guidance system for small unmanned aircraft using low-cost sensors , 2015 .

[9]  Alessandro Gardi,et al.  Reverse engineering of a fixed wing Unmanned Aircraft 6-DoF model based on laser scanner measurements , 2014, 2014 IEEE Metrology for Aerospace (MetroAeroSpace).

[10]  Roberto Sabatini,et al.  Low-Cost Navigation and Guidance Systems for Unmanned Aerial Vehicles — Part 1: Vision-Based and Integrated Sensors , 2012 .

[11]  Roberto Sabatini,et al.  A new avionics-based GNSS integrity augmentation system , 2013 .

[12]  Duc Truong Pham,et al.  Reverse engineering: An industrial perspective , 2008 .

[13]  Alessandro Gardi,et al.  4-Dimensional Trajectory Negotiation and Validation System for the Next Generation Air Traffic Management , 2013 .