New basis sets for the evaluation of interaction‐induced electric properties in hydrogen‐bonded complexes

Interaction‐induced static electric properties, that is, dipole moment, polarizability, and first hyperpolarizability, of the CO(HF)n and N2(HF)n, n = 1–9 hydrogen‐bonded complexes are evaluated within the finite field approach using the Hartree–Fock, density functional theory, Møller–Plesset second‐order perturbation theory, and coupled cluster methods, and the LPol‐n (n = ds, dl, fs, fl) basis sets. To compare the performance of the different methods with respect to the increase of the complex size, we consider as model systems linear chains of the complexes. We analyze the results in terms of the many‐body and cooperative effects. © 2012 Wiley Periodicals, Inc.

[1]  Dmitrij Rappoport,et al.  Property-optimized gaussian basis sets for molecular response calculations. , 2010, The Journal of chemical physics.

[2]  D. M. Bishop,et al.  Dipole and higher order polarizabilities of the 10-electron systems , 1986 .

[3]  Roland Lindh,et al.  2MOLCAS as a development platform for quantum chemistry software , 2004 .

[4]  A. J. Sadlej,et al.  Reduced-size polarized basis sets for calculations of molecular electric properties. IV. First-row transition metals , 2007 .

[5]  Claude Pouchan,et al.  Molecules in static electric fields: Linear and nonlinear polarizability of HC≡N and HC≡P , 1998 .

[6]  Steven E. J. Bell,et al.  Reduced–size polarized basis sets for calculations of molecular electric properties. III. Second–row atoms , 2005 .

[7]  Anna Kaczmarek-Kȩdziera,et al.  On the potential application of DFT methods in predicting the interaction-induced electric properties of molecular complexes. Molecular H-bonded chains as a case of study , 2011, Journal of Molecular Modeling.

[8]  Berta Fernández,et al.  Accurate calculation of the intensity dependence of the refractive index using polarized basis sets. , 2012, The Journal of chemical physics.

[9]  Henrik Koch,et al.  Ground state benzene–argon intermolecular potential energy surface , 1999 .

[10]  P. Jankowski,et al.  Spectra of N2–HF from symmetry-adapted perturbation theory potential , 2001 .

[11]  George Maroulis,et al.  Electric moments, polarizabilities and hyperpolarizabilities for carbon disulfide (SCS) from accurate SCF calculations , 1992 .

[12]  D. Dudis,et al.  Quantum Mechanical Methods for Predicting Nonlinear Optical Properties , 2007 .

[13]  G. Maroulis Computational Aspects of Interaction Hyperpolarizability Calculations. A Study on H2···H2, Ne···HF, Ne···FH, He···He, Ne···Ne, Ar···Ar, and Kr···Kr† , 2000 .

[14]  Berta Fernández,et al.  New basis sets for the evaluation of interaction energies: an ab initio study of the He-He, Ne-Ne, Ar-Ar, He-Ne, He-Ar and Ne-Ar van der Waals complex internuclear potentials and ro-vibrational spectra. , 2010, Physical chemistry chemical physics : PCCP.

[15]  Denis Jacquemin,et al.  A generalized Romberg differentiation procedure for calculation of hyperpolarizabilities , 2007 .

[16]  James J. P. Stewart,et al.  Calculation of the nonlinear optical properties of molecules , 1990 .

[17]  C. E. Dykstra,et al.  The equilibrium structures of the NN–HF and OC–HF complexes , 1982 .

[18]  A. J. Sadlej,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[19]  S. Scheiner,et al.  Ab initio study of structure and cooperativity in H3N−HF−HF and H3P−HF−HF , 1986 .

[20]  Berta Fernández,et al.  Interaction-induced electric properties and cooperative effects in model systems. , 2010, Physical chemistry chemical physics : PCCP.

[21]  G. Maroulis,et al.  Interaction induced dipole moment and polarizability in CO2…Rg, Rg = He, Ne, Ar, Kr and Xe , 2001 .

[22]  L. Curtiss,et al.  Investigation of the differences in stability of the OC⋅⋅⋅HF and CO⋅⋅⋅HF complexes , 1985 .

[23]  H. Koch,et al.  Benzene-argon S1 intermolecular potential energy surface , 1999 .

[24]  Berta Fernández,et al.  Importance of electron correlation effects and basis set superposition error in calculations of interaction energies and interaction-induced electric properties in hydrogen-bonded complexes: a model study , 2011 .

[25]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[26]  T. H. Dunning,et al.  Ab initio investigation of the N2–HF complex: Accurate structure and energetics , 1996 .

[27]  A. J. Sadlej,et al.  Molecular electric polarizabilities. Electronic-field-variant (EFV) gaussian basis set for polarizability calculations , 1977 .

[28]  N. Hush,et al.  Ab initio quantum chemical studies of electric field gradients in the hydrogen bonded molecular nitrogen-hydrogen fluoride and molecular nitrogen-hydrogen chloride complexes , 1985 .

[29]  Steven E. J. Bell,et al.  Reduced‐size polarized basis sets for calculations of molecular electric properties. I. The basis set generation , 2005, J. Comput. Chem..

[30]  Ivan Černušák,et al.  Standardized Medium-Size Basis Sets for Calculations of Molecular Electric Properties: Group IIIA , 2003 .

[31]  S. McDowell Comparison of the intermolecular properties of N2…HArF with N2…HF , 2003 .

[32]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[33]  Angelika Baranowska-Laczkowska,et al.  Polarized basis sets for accurate calculations of static and dynamic electric properties of molecules , 2010, J. Comput. Chem..

[34]  Berta Fernández,et al.  New bases for the evaluation of interaction energies: An ab initio study of the CO–Ne van der Waals complex intermolecular potential and ro-vibrational spectrum , 2011, CP 2011.

[35]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[36]  J. Muenter Polarizability Anisotropy of Hydrogen Fluoride , 1972 .

[37]  N. Hush,et al.  Ab initio quantum chemical studies of the electronic properties of the hydrogen bonded N2HF, N2HCl, (HCN)2 and NH3HCN complexes , 1987 .

[38]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[39]  D. M. Bishop,et al.  Electric polarizabilities and hyperpolarizabilities for the ground state of the nitrogen molecule , 1986 .

[40]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[41]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[42]  Roger E. Miller,et al.  The rotational dynamics of N2–HF and OC–HF in helium nanodroplets , 2002 .

[43]  Explicit time-dependence of basis functions and its consequences , 2004 .

[44]  Donald G Truhlar,et al.  Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.

[45]  H. Rutishauser,et al.  Ausdehnung des Rombergschen Prinzips , 1963 .

[46]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[47]  E. J. Campbell,et al.  Molecular g values, magnetic susceptibility anisotropies, and molecular quadrupole moments in 15N2–HF, 15N2–DF, OC–HF, OC–DF, and OC–HCl van der Waals complexes , 1983 .

[48]  Goebel,et al.  Theoretical and experimental determination of the polarizabilities of the zinc 1S0 state. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[49]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[50]  D. M. Bishop,et al.  On the electric polarisabilities of Li+(1S), Li(2S) and Li-(1S) , 1986 .

[51]  Yan Zhao,et al.  Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. , 2005, The Journal of chemical physics.

[52]  W. Bartkowiak,et al.  Many-body interactions and the electric response of hydrogen-bonded molecular chains , 2011 .