Ideals of varieties parameterized by certain symmetric tensors
暂无分享,去创建一个
[1] E. K. Wakeford. On Canonical Forms , 1920 .
[2] J. Semple,et al. Introduction to Algebraic Geometry , 1949 .
[3] D. W. Sharpe,et al. ON CERTAIN POLYNOMIAL IDEALS DEFINED BY MATRICES , 1964 .
[4] J. Oxford,et al. Oxford , 1968, Leaving The Arena.
[5] Robert Grone,et al. Decomposable tensors as a quadratic variety , 1977 .
[6] J. Kruskal,et al. Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters , 1980 .
[7] Thomas Lickteig. Typical tensorial rank , 1985 .
[8] J A Lake,et al. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. , 1987, Molecular biology and evolution.
[9] V. Strassen. Relative bilinear complexity and matrix multiplication. , 1987 .
[10] A. Lorenzini. Betti numbers of perfect homogeneous ideals , 1989 .
[11] A. Gimigliano. On Veronesean surfaces , 1989 .
[12] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[13] A. Geramita,et al. Generators for the defining ideal of certain rational surfaces , 1991 .
[14] A. Gimigliano,et al. On the Ideal of Veronesean Surfaces , 1993, Canadian Journal of Mathematics.
[15] Zhuzhoma Evgeny Victorovich,et al. Translation of Mathematical Monographs , 1996 .
[16] Bernd Ulrich,et al. Rees algebras of ideals with low codimension , 1996 .
[17] Michael Clausen,et al. Algebraic Complexity Theory : With the Collaboration of Thomas Lickteig , 1997 .
[18] R. Bro. PARAFAC. Tutorial and applications , 1997 .
[19] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[20] J. Herzog,et al. Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces , 1997 .
[21] Mario Pucci,et al. The Veronese Variety and Catalecticant Matrices , 1998 .
[22] H. Tài. On the Rees algebra of certain codimension two perfect ideals , 2001, math/0103087.
[23] A. Geramita,et al. Ranks of tensors, secant varieties of Segre varieties and fat points , 2002 .
[24] Pierre Comon,et al. Tensor Decompositions, State of the Art and Applications , 2002 .
[25] Huy Tai Ha. Box-shaped matrices and the defining ideal of certain blowup surfaces , 2002 .
[26] H A Huy,et al. Box-shaped Matrices and the Defining Ideal of Certain Blowup Surfaces , 2002 .
[27] M. V. Catalisano,et al. Higher secant varieties of Segre-Veronese varieties , 2003, math/0309399.
[28] E. Allman,et al. Phylogenetic invariants for the general Markov model of sequence mutation. , 2003, Mathematical biosciences.
[29] J. M. Landsberg,et al. On the Ideals of Secant Varieties of Segre Varieties , 2004, Found. Comput. Math..
[30] Suela Ruffa,et al. Introductory Notes to Algebraic Statistics , 2005 .
[31] Bernd Sturmfels,et al. Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..
[32] L. Pachter,et al. Algebraic Statistics for Computational Biology: Preface , 2005 .
[33] J. Landsberg,et al. On the ideals and singularities of secant varieties of Segre varieties , 2006, math/0601452.
[34] Chris Peterson,et al. Induction for secant varieties of Segre varieties , 2006, math/0607191.
[35] J. M. Landsberg,et al. Geometry and the complexity of matrix multiplication , 2007, ArXiv.
[36] C. Bocci. Topics on phylogenetic algebraic geometry , 2007 .
[37] Antonio Guarnieri,et al. WITH THE COLLABORATION OF , 2009 .
[38] Ravi P. Agarwal,et al. The Canonical Forms , 2009 .