Ideals of varieties parameterized by certain symmetric tensors

[1]  E. K. Wakeford On Canonical Forms , 1920 .

[2]  J. Semple,et al.  Introduction to Algebraic Geometry , 1949 .

[3]  D. W. Sharpe,et al.  ON CERTAIN POLYNOMIAL IDEALS DEFINED BY MATRICES , 1964 .

[4]  J. Oxford,et al.  Oxford , 1968, Leaving The Arena.

[5]  Robert Grone,et al.  Decomposable tensors as a quadratic variety , 1977 .

[6]  J. Kruskal,et al.  Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters , 1980 .

[7]  Thomas Lickteig Typical tensorial rank , 1985 .

[8]  J A Lake,et al.  A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. , 1987, Molecular biology and evolution.

[9]  V. Strassen Relative bilinear complexity and matrix multiplication. , 1987 .

[10]  A. Lorenzini Betti numbers of perfect homogeneous ideals , 1989 .

[11]  A. Gimigliano On Veronesean surfaces , 1989 .

[12]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[13]  A. Geramita,et al.  Generators for the defining ideal of certain rational surfaces , 1991 .

[14]  A. Gimigliano,et al.  On the Ideal of Veronesean Surfaces , 1993, Canadian Journal of Mathematics.

[15]  Zhuzhoma Evgeny Victorovich,et al.  Translation of Mathematical Monographs , 1996 .

[16]  Bernd Ulrich,et al.  Rees algebras of ideals with low codimension , 1996 .

[17]  Michael Clausen,et al.  Algebraic Complexity Theory : With the Collaboration of Thomas Lickteig , 1997 .

[18]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[19]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[20]  J. Herzog,et al.  Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces , 1997 .

[21]  Mario Pucci,et al.  The Veronese Variety and Catalecticant Matrices , 1998 .

[22]  H. Tài On the Rees algebra of certain codimension two perfect ideals , 2001, math/0103087.

[23]  A. Geramita,et al.  Ranks of tensors, secant varieties of Segre varieties and fat points , 2002 .

[24]  Pierre Comon,et al.  Tensor Decompositions, State of the Art and Applications , 2002 .

[25]  Huy Tai Ha Box-shaped matrices and the defining ideal of certain blowup surfaces , 2002 .

[26]  H A Huy,et al.  Box-shaped Matrices and the Defining Ideal of Certain Blowup Surfaces , 2002 .

[27]  M. V. Catalisano,et al.  Higher secant varieties of Segre-Veronese varieties , 2003, math/0309399.

[28]  E. Allman,et al.  Phylogenetic invariants for the general Markov model of sequence mutation. , 2003, Mathematical biosciences.

[29]  J. M. Landsberg,et al.  On the Ideals of Secant Varieties of Segre Varieties , 2004, Found. Comput. Math..

[30]  Suela Ruffa,et al.  Introductory Notes to Algebraic Statistics , 2005 .

[31]  Bernd Sturmfels,et al.  Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..

[32]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: Preface , 2005 .

[33]  J. Landsberg,et al.  On the ideals and singularities of secant varieties of Segre varieties , 2006, math/0601452.

[34]  Chris Peterson,et al.  Induction for secant varieties of Segre varieties , 2006, math/0607191.

[35]  J. M. Landsberg,et al.  Geometry and the complexity of matrix multiplication , 2007, ArXiv.

[36]  C. Bocci Topics on phylogenetic algebraic geometry , 2007 .

[37]  Antonio Guarnieri,et al.  WITH THE COLLABORATION OF , 2009 .

[38]  Ravi P. Agarwal,et al.  The Canonical Forms , 2009 .