Lymphocyte Anergy in Patients with Carcinoma

A response toPreferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset by SE Choe, M Boutros, AM Michelson, GM Church and MS Halfon. Genome Biology 2005, 6:R16.

[1]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[2]  K. Shortman,et al.  The separation of different cell classes from lymphoid organs. 1. The use of glass bead columns to separate small lymphocytes, remove damaged cells and fractionate cell suspensions. , 1966, The Australian journal of experimental biology and medical science.

[3]  Delayed hypersensitivity in breast cancer. , 1968, The British journal of surgery.

[4]  I. Hamlin Possible host resistance in carcinoma of the breast: a histological study. , 1968, British Journal of Cancer.

[5]  P. Alexander Prospects for immunotherapy of cancer: experience in experimental systems. , 1970, British medical journal.

[6]  P. Disaia,et al.  Cell‐mediated immune reaction to two gynecologic malignant tumors , 1971, Cancer.

[7]  E. Holborow,et al.  Immunoglobulins on the surface of human lymphocytes. , 1971, Lancet.

[8]  K. Hellström,et al.  Serum factors in tumor‐free patients cancelling the blocking of cell‐mediated tumor immunity , 1971, International journal of cancer.

[9]  H. Muller,et al.  Specific Immune Response in Human Skin Carcinoma , 1971, British medical journal.

[10]  J. Stjernswärd,et al.  Tumor-distinctive cellular immunity to human sarcoma and carcinoma. , 1971, Israel journal of medical sciences.

[11]  E. Hughes,et al.  Immunological Reactivity in Patients with Carcinoma of Colon , 1971, British medical journal.

[12]  G. Currie,et al.  Serum Mediated Inhibition of the Immunological Reactions of the Patient to his Own Tumour: A Possible Role for Circulating Antigen , 1972, British Journal of Cancer.

[13]  K. Hellström,et al.  Elution of “blocking factors” from human tumors, capable of abrogating tumor‐cell destruction by specifically immune lymphocytes , 1972, International journal of cancer.

[14]  R. W. Baldwin,et al.  Blocking of lymphocyte-mediated cytotoxicity for rat hepatoma cells by tumour-specific antigen-antibody complexes. , 1972, Nature: New biology.

[15]  D. B. Amos,et al.  Tumor Imunity in vitro: Destruction of a Mouse Ascites Tumor through a Cycling Pathway , 1972, Science.

[16]  J. Rolland,et al.  Immune Response to a Syngeneic Rat Tumour: Development of Regional Node Lymphocyte Anergy , 1973, British Journal of Cancer.

[17]  K. Hou‐Jensen,et al.  [Histology and prognosis in cutaneous malignant melanoma]. , 1977, Ugeskrift for laeger.

[18]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[19]  B. Sorić Statistical “Discoveries” and Effect-Size Estimation , 1989 .

[20]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[21]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[23]  John D. Storey A direct approach to false discovery rates , 2002 .

[24]  S. Dudoit,et al.  Multiple Hypothesis Testing in Microarray Experiments , 2003 .

[25]  John D. Storey The positive false discovery rate: a Bayesian interpretation and the q-value , 2003 .

[26]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  John D. Storey,et al.  Statistical Significance for Genome-Wide Studies , 2003 .

[28]  John D. Storey,et al.  Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach , 2004 .

[29]  G. Church,et al.  Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset , 2005, Genome Biology.

[30]  Robert Tibshirani,et al.  The 'miss rate' for the analysis of gene expression data. , 2005, Biostatistics.

[31]  Jeffrey C Miecznikowski,et al.  Putative null distributions corresponding to tests of differential expression in the Golden Spike dataset are intensity dependent , 2007, BMC Genomics.