The Catalogue for Astrophysical Turbulence Simulations (CATS)
暂无分享,去创建一个
A. J. Christensen | D. Finkbeiner | A. Lazarian | D. Collins | J. Naiman | Z. Slepian | C. Federrath | M. Krumholz | A. Hill | A. Lazarian | B. Burkhart | S. Bialy | M. M. Low | S. Appel | S. Portillo | P. Mocz | J. Cho | D. Fielding | J. C. Ibáñez-Mejía | M. Li | M. Mac Low | B. Shane | Y. Yuan | J. C. Ibáñez-Mejía | Jungyeon Cho | David C. Collins | Alex S. Hill
[1] T. Henning,et al. How do velocity structure functions trace gas dynamics in simulated molecular clouds? , 2019, American Museum of Natural History Research Library.
[2] J. Stone,et al. The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers , 2020, The Astrophysical Journal Supplement Series.
[3] E. Ostriker,et al. Multiphase Gas and the Fractal Nature of Radiative Turbulent Mixing Layers , 2020, The Astrophysical Journal.
[4] M. Krumholz,et al. The life cycle of the Central Molecular Zone - II. Distribution of atomic and molecular gas tracers. , 2020, Monthly notices of the Royal Astronomical Society.
[5] B. Burkhart,et al. The Driving Scale–Density Decorrelation Scale Relation in a Turbulent Medium , 2020, The Astrophysical Journal.
[6] E. Quataert,et al. The Impact of Type Ia Supernovae in Quiescent Galaxies. II. Energetics and Turbulence , 2019, The Astrophysical Journal.
[7] E. Quataert,et al. The Impact of Type Ia Supernovae in Quiescent Galaxies. I. Formation of the Multiphase Interstellar Medium , 2019, The Astrophysical Journal.
[8] C. Federrath,et al. Filaments and striations: anisotropies in observed, supersonic, highly magnetized turbulent clouds , 2019, Monthly Notices of the Royal Astronomical Society.
[9] M. Wolfire,et al. Chemical Abundances in a Turbulent Medium–H2, OH+, H2O+, ArH+ , 2019, The Astrophysical Journal.
[10] R. Klessen,et al. Radiative Transfer with POLARIS. II. Modeling of Synthetic Galactic Synchrotron Observations , 2019, The Astrophysical Journal.
[11] Jason L. Loeppky,et al. TurbuStat: Turbulence Statistics in Python , 2019, The Astronomical Journal.
[12] Bing Zhang,et al. INTERPRETATION OF THE STRUCTURE FUNCTION OF ROTATION MEASURE IN THE INTERSTELLAR MEDIUM , 2016, 1604.05445.
[13] Devin W. Silvia,et al. ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, J. Open Source Softw..
[14] C. Federrath,et al. On the shape and completeness of the column density probability distribution function of molecular clouds , 2018, Monthly Notices of the Royal Astronomical Society.
[15] A. Hill,et al. Effect of the Heating Rate on the Stability of the Three-phase Interstellar Medium , 2018, The Astrophysical Journal.
[16] B. Burkhart,et al. Star formation from dense shocked regions in supersonic isothermal magnetoturbulence , 2018, Monthly Notices of the Royal Astronomical Society.
[17] C. Federrath,et al. Numerical calibration of the HCN–star formation correlation , 2018, Monthly Notices of the Royal Astronomical Society.
[18] D. Finkbeiner,et al. Developing the 3-point Correlation Function for the Turbulent Interstellar Medium , 2017, The Astrophysical Journal.
[19] Jason L. Loeppky,et al. Identifying tools for comparing simulations and observations of spectral-line data cubes , 2017, 1707.05415.
[20] A. Lazarian,et al. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields , 2017 .
[21] Statistics,et al. The supernova-regulated ISM. III. Generation of vorticity, helicity and mean flows , 2017, 1705.08642.
[22] R. Klessen,et al. Feeding versus Falling: The Growth and Collapse of Molecular Clouds in a Turbulent Interstellar Medium , 2017, 1705.01779.
[23] A. Sternberg,et al. The H i-to-H2 Transition in a Turbulent Medium , 2017, 1703.08549.
[24] A. Lazarian,et al. Tracing Magnetic Fields with Spectroscopic Channel Maps , 2017, 1703.03119.
[25] V. Springel,et al. Moving-mesh Simulations of Star-forming Cores in Magneto-gravo-turbulence , 2017, 1702.06133.
[26] Kalina Borkiewicz,et al. Houdini for Astrophysical Visualization , 2017 .
[27] T. Henning,et al. H i-to-H2 Transition Layers in the Star-forming Region W43 , 2016, 1612.02428.
[28] C. Federrath. Magnetic field amplification in turbulent astrophysical plasmas , 2016, Journal of Plasma Physics.
[29] V. Springel,et al. A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics , 2016, 1606.02310.
[30] D. Kandel,et al. Extending velocity channel analysis for studying turbulence anisotropies , 2016, 1604.06102.
[31] S. Reissl,et al. Radiative transfer with POLARIS: I. Analysis of magnetic fields through synthetic dust continuum polarization measurements , 2016, 1604.05305.
[32] A. Lazarian,et al. RADIO SYNCHROTRON FLUCTUATION STATISTICS AS A PROBE OF MAGNETIZED INTERSTELLAR TURBULENCE , 2016, 1603.02751.
[33] A. Sternberg,et al. ANALYTIC H i-to-H2 PHOTODISSOCIATION TRANSITION PROFILES , 2016, 1601.02608.
[34] A. Lazarian,et al. PRINCIPAL COMPONENT ANALYSIS STUDIES OF TURBULENCE IN OPTICALLY THICK GAS , 2015, 1511.03712.
[35] D. Eisenstein,et al. Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms , 2015, 1506.04746.
[36] R. Klessen,et al. GRAVITATIONAL CONTRACTION VERSUS SUPERNOVA DRIVING AND THE ORIGIN OF THE VELOCITY DISPERSION–SIZE RELATION IN MOLECULAR CLOUDS , 2015, 1511.05602.
[37] A. Lazarian,et al. THE PHASE COHERENCE OF INTERSTELLAR DENSITY FLUCTUATIONS , 2015, 1511.03660.
[38] P. Padoan,et al. SUPERNOVA DRIVING. I. THE ORIGIN OF MOLECULAR CLOUD TURBULENCE , 2015, 1509.04663.
[39] Min-Young Lee,et al. THE LOGNORMAL PROBABILITY DISTRIBUTION FUNCTION OF THE PERSEUS MOLECULAR CLOUD: A COMPARISON OF HI AND DUST , 2015, 1509.02889.
[40] D. Eisenstein,et al. Computing the Three-Point Correlation Function of Galaxies in $\mathcal{O}(N^2)$ Time , 2015, 1506.02040.
[41] F. Petit,et al. H i-TO-H2 TRANSITIONS IN THE PERSEUS MOLECULAR CLOUD , 2015, 1505.06200.
[42] Christoph Federrath,et al. Inefficient star formation through turbulence, magnetic fields and feedback , 2015, 1504.03690.
[43] F. Le Petit,et al. H i-TO-H2 TRANSITIONS AND H i COLUMN DENSITIES IN GALAXY STAR-FORMING REGIONS , 2014, 1404.5042.
[44] G. Kowal,et al. OPACITY BROADENING OF 13CO LINEWIDTHS AND ITS EFFECT ON THE VARIANCE–SONIC MACH NUMBER RELATION , 2014, 1402.6702.
[45] Mark R. Krumholz,et al. The big problems in star formation: The star formation rate, stellar clustering, and the initial mass function , 2014, 1402.0867.
[46] A. Lazarian,et al. SUPERDIFFUSION OF COSMIC RAYS: IMPLICATIONS FOR COSMIC RAY ACCELERATION , 2013, 1308.3244.
[47] M. Krumholz. despotic – a new software library to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds , 2013, 1304.2404.
[48] Lynn B. Reid,et al. Pragmatic optimizations for better scientific utilization of large supercomputers , 2013, Int. J. High Perform. Comput. Appl..
[49] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[50] Huirong Yan,et al. COSMIC-RAY PARALLEL AND PERPENDICULAR TRANSPORT IN TURBULENT MAGNETIC FIELDS , 2013, 1307.1346.
[51] A. Goodman,et al. HIERARCHICAL STRUCTURE OF MAGNETOHYDRODYNAMIC TURBULENCE IN POSITION-POSITION-VELOCITY SPACE , 2012, 1206.4703.
[52] Anshu Dubey,et al. Optimization of multigrid based elliptic solver for large scale simulations in the FLASH code , 2012, Concurr. Comput. Pract. Exp..
[53] A. Lazarian,et al. THE COLUMN DENSITY VARIANCE– RELATIONSHIP , 2012 .
[54] R. Klessen,et al. A NEW DENSITY VARIANCE–MACH NUMBER RELATION FOR SUBSONIC AND SUPERSONIC ISOTHERMAL TURBULENCE , 2012, 1206.4524.
[55] Alyssa A. Goodman,et al. Principles of high‐dimensional data visualization in astronomy , 2012, 1205.4747.
[56] M. Norman,et al. THE TWO STATES OF STAR-FORMING CLOUDS , 2012, 1202.2594.
[57] C. Klingenberg,et al. VERTICAL STRUCTURE OF A SUPERNOVA-DRIVEN TURBULENT, MAGNETIZED INTERSTELLAR MEDIUM , 2012, 1202.0552.
[58] Rahul Shetty,et al. RADMC-3D: A multi-purpose radiative transfer tool , 2012 .
[59] J. Peek,et al. A HIGH-RESOLUTION STUDY OF THE H i–H2 TRANSITION ACROSS THE PERSEUS MOLECULAR CLOUD , 2011, 1110.2745.
[60] Andreas Bauer,et al. Shocking results without shocks: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations , 2011, 1109.4413.
[61] A. Tielens. The Molecular Universe , 2011, Proceedings of the International Astronomical Union.
[62] R. Klessen,et al. Modeling H2 formation in the turbulent ISM: Solenoidal versus compressive turbulent forcing , 2011, 1103.3056.
[63] Christoph Federrath,et al. A NEW JEANS RESOLUTION CRITERION FOR (M)HD SIMULATIONS OF SELF-GRAVITATING GAS: APPLICATION TO MAGNETIC FIELD AMPLIFICATION BY GRAVITY-DRIVEN TURBULENCE , 2011, 1102.0266.
[64] Christian Klingenberg,et al. A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear stability, implementation and tests , 2011, J. Comput. Phys..
[65] Sandeep Koranne,et al. Hierarchical Data Format 5 : HDF5 , 2011 .
[66] M. Norman,et al. yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.
[67] Richard I. Klein,et al. SUB-ALFVÉNIC NON-IDEAL MHD TURBULENCE SIMULATIONS WITH AMBIPOLAR DIFFUSION. II. COMPARISON WITH OBSERVATION, CLUMP PROPERTIES, AND SCALING TO PHYSICAL UNITS , 2010, 1007.2032.
[68] Michael L. Norman,et al. COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO , 2010 .
[69] V. Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.
[70] C. McKee,et al. THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. III. A NEW METHOD FOR DETERMINING THE MOLECULAR CONTENT OF PRIMORDIAL AND DUSTY CLOUDS , 2009, 0908.0330.
[71] Michael L. Norman,et al. Piecewise parabolic method on a local stencil for magnetized supersonic turbulence simulation , 2009, J. Comput. Phys..
[72] R. Klessen,et al. Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.
[73] G. Kowal,et al. NUMERICAL TESTS OF FAST RECONNECTION IN WEAKLY STOCHASTIC MAGNETIC FIELDS , 2009, 0903.2052.
[74] Hui Li,et al. Cosmological AMR MHD with Enzo , 2009, 0902.2594.
[75] A. Lazarian,et al. Obtaining Spectra of Turbulent Velocity from Observations , 2008, 0811.0839.
[76] G. Kowal,et al. DENSITY STUDIES OF MHD INTERSTELLAR TURBULENCE: STATISTICAL MOMENTS, CORRELATIONS AND BISPECTRUM , 2008, 0811.0822.
[77] Nickolay Y. Gnedin,et al. MODELING MOLECULAR HYDROGEN AND STAR FORMATION IN COSMOLOGICAL SIMULATIONS , 2008, 0810.4148.
[78] G. Bryan,et al. DEPENDENCE OF INTERSTELLAR TURBULENT PRESSURE ON SUPERNOVA RATE , 2008, 0811.3747.
[79] R. Klessen,et al. The Density Probability Distribution in Compressible Isothermal Turbulence: Solenoidal versus Compressive Forcing , 2008, 0808.0605.
[80] R. J. Reynolds,et al. ApJ, in press Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE TURBULENT WARM IONIZED MEDIUM: EMISSION MEASURE DISTRIBUTION AND MHD SIMULATIONS , 2022 .
[81] R. Klein,et al. Sub-Alfvénic Nonideal MHD Turbulence Simulations with Ambipolar Diffusion. I. Turbulence Statistics , 2008, 0805.0597.
[82] Yi Li,et al. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence , 2008, 0804.1703.
[83] James M. Stone,et al. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..
[84] P. Ricker. A Direct Multigrid Poisson Solver for Oct-Tree Adaptive Meshes , 2007, 0710.4397.
[85] E. Ostriker,et al. Theory of Star Formation , 2007, 0707.3514.
[86] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[87] G. Kowal,et al. Scaling Relations of Compressible MHD Turbulence , 2007, 0705.2464.
[88] M. Norman,et al. The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.
[89] A. Mignone. A simple and accurate Riemann solver for isothermal MHD , 2007, J. Comput. Phys..
[90] G. Kowal,et al. Density Fluctuations in MHD Turbulence: Spectra, Intermittency, and Topology , 2006, astro-ph/0608051.
[91] C. Forest,et al. Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[92] C. Forest,et al. Intermittent magnetic field excitation by a turbulent flow of liquid sodium. , 2006, Physical review letters.
[93] M. Mac Low,et al. Turbulent Structure of a Stratified Supernova-driven Interstellar Medium , 2005, astro-ph/0601005.
[94] S. Boldyrev. On the Spectrum of Magnetohydrodynamic Turbulence , 2005, Physical review letters.
[95] K. Kusano,et al. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .
[96] A. Lazarian,et al. DENSITY SCALING AND ANISOTROPY IN SUPERSONIC MHD TURBULENCE , 2005 .
[97] A. Lazarian,et al. Density Scaling and Anisotropy in Supersonic Magnetohydrodynamic Turbulence , 2005, astro-ph/0502547.
[98] D. Balsara,et al. Amplification of Interstellar Magnetic Fields by Supernova-driven Turbulence , 2004 .
[99] D. O. Astronomy,et al. Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.
[100] D. Balsara,et al. Generation of Magnetic Fields in the Multi-phase ISM with Supernova-Driven Turbulence , 2004, astro-ph/0403660.
[101] A. Lazarian,et al. Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications , 2003, astro-ph/0301062.
[102] A. Lazarian,et al. Scattering of cosmic rays by magnetohydrodynamic interstellar turbulence. , 2002, Physical review letters.
[103] D. Balsara. Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001, astro-ph/0112150.
[104] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[105] B. Fryxell,et al. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .
[106] R. Klessen,et al. Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.
[107] Leslie Greengard,et al. A Fast Direct Solver for Elliptic Partial Differential Equations on Adaptively Refined Meshes , 1999, SIAM J. Sci. Comput..
[108] A. Lazarian,et al. Reconnection in a Weakly Stochastic Field , 1998, astro-ph/9811037.
[109] M. M. Low. The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds , 1998, astro-ph/9809177.
[110] Richard I. Klein,et al. The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .
[111] B. Jones,et al. The universality of the stellar initial mass function , 1997 .
[112] Jr. Fleck,et al. Scaling Relations for the Turbulent, Non--Self-gravitating, Neutral Component of the Interstellar Medium , 1996 .
[113] John W. Armstrong,et al. Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .
[114] J. Bregman,et al. Global Models of the Interstellar Medium in Disk Galaxies , 1995 .
[115] Guohong Xu. A new parallel N body gravity solver: TPM , 1994, astro-ph/9409021.
[116] S. Sridhar,et al. Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .
[117] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[118] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[119] J. Higdon. Density fluctuations in the interstellar medium: evidence for anisotropic magnetogasdynamic turbulen , 1984 .
[120] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[121] W. Matthaeus,et al. Turbulent generation of outward-traveling interplanetary Alfvenic fluctuations , 1983 .
[122] John V. Shebalin,et al. Anisotropy in MHD turbulence due to a mean magnetic field , 1983, Journal of Plasma Physics.
[123] D. Montgomery,et al. Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field , 1981 .
[124] B. Draine. Photoelectric heating of interstellar gas , 1978 .
[125] R. C. Bohlin,et al. A survey of interstellar molecular hydrogen. I , 1977 .
[126] H. Habing. The interstellar radiation density between 912 A and 2400 A , 1968 .
[127] K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .
[128] Robert H. Kraichnan,et al. Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .