The Catalogue for Astrophysical Turbulence Simulations (CATS)

Turbulence is a key process in many fields of astrophysics. Advances in numerical simulations of fluids over the last several decades have revolutionized our understanding of turbulence and related processes such as star formation and cosmic ray propagation. However, data from numerical simulations of astrophysical turbulence are often not made public. We introduce a new simulation-oriented database for the astronomical community: the Catalogue for Astrophysical Turbulence Simulations (CATS), located at www.mhdturbulence.com. CATS includes magnetohydrodynamic (MHD) turbulent box simulation data products generated by the public codes athena++, arepo, enzo, and flash. CATS also includes several synthetic observational data sets, such as turbulent HI data cubes. We also include measured power spectra and three-point correlation functions from some of these data. We discuss the importance of open-source statistical and visualization tools for the analysis of turbulence simulations such as those found in CATS.

[1]  T. Henning,et al.  How do velocity structure functions trace gas dynamics in simulated molecular clouds? , 2019, American Museum of Natural History Research Library.

[2]  J. Stone,et al.  The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers , 2020, The Astrophysical Journal Supplement Series.

[3]  E. Ostriker,et al.  Multiphase Gas and the Fractal Nature of Radiative Turbulent Mixing Layers , 2020, The Astrophysical Journal.

[4]  M. Krumholz,et al.  The life cycle of the Central Molecular Zone - II. Distribution of atomic and molecular gas tracers. , 2020, Monthly notices of the Royal Astronomical Society.

[5]  B. Burkhart,et al.  The Driving Scale–Density Decorrelation Scale Relation in a Turbulent Medium , 2020, The Astrophysical Journal.

[6]  E. Quataert,et al.  The Impact of Type Ia Supernovae in Quiescent Galaxies. II. Energetics and Turbulence , 2019, The Astrophysical Journal.

[7]  E. Quataert,et al.  The Impact of Type Ia Supernovae in Quiescent Galaxies. I. Formation of the Multiphase Interstellar Medium , 2019, The Astrophysical Journal.

[8]  C. Federrath,et al.  Filaments and striations: anisotropies in observed, supersonic, highly magnetized turbulent clouds , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  M. Wolfire,et al.  Chemical Abundances in a Turbulent Medium–H2, OH+, H2O+, ArH+ , 2019, The Astrophysical Journal.

[10]  R. Klessen,et al.  Radiative Transfer with POLARIS. II. Modeling of Synthetic Galactic Synchrotron Observations , 2019, The Astrophysical Journal.

[11]  Jason L. Loeppky,et al.  TurbuStat: Turbulence Statistics in Python , 2019, The Astronomical Journal.

[12]  Bing Zhang,et al.  INTERPRETATION OF THE STRUCTURE FUNCTION OF ROTATION MEASURE IN THE INTERSTELLAR MEDIUM , 2016, 1604.05445.

[13]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, J. Open Source Softw..

[14]  C. Federrath,et al.  On the shape and completeness of the column density probability distribution function of molecular clouds , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  A. Hill,et al.  Effect of the Heating Rate on the Stability of the Three-phase Interstellar Medium , 2018, The Astrophysical Journal.

[16]  B. Burkhart,et al.  Star formation from dense shocked regions in supersonic isothermal magnetoturbulence , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  C. Federrath,et al.  Numerical calibration of the HCN–star formation correlation , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  D. Finkbeiner,et al.  Developing the 3-point Correlation Function for the Turbulent Interstellar Medium , 2017, The Astrophysical Journal.

[19]  Jason L. Loeppky,et al.  Identifying tools for comparing simulations and observations of spectral-line data cubes , 2017, 1707.05415.

[20]  A. Lazarian,et al.  Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields , 2017 .

[21]  Statistics,et al.  The supernova-regulated ISM. III. Generation of vorticity, helicity and mean flows , 2017, 1705.08642.

[22]  R. Klessen,et al.  Feeding versus Falling: The Growth and Collapse of Molecular Clouds in a Turbulent Interstellar Medium , 2017, 1705.01779.

[23]  A. Sternberg,et al.  The H i-to-H2 Transition in a Turbulent Medium , 2017, 1703.08549.

[24]  A. Lazarian,et al.  Tracing Magnetic Fields with Spectroscopic Channel Maps , 2017, 1703.03119.

[25]  V. Springel,et al.  Moving-mesh Simulations of Star-forming Cores in Magneto-gravo-turbulence , 2017, 1702.06133.

[26]  Kalina Borkiewicz,et al.  Houdini for Astrophysical Visualization , 2017 .

[27]  T. Henning,et al.  H i-to-H2 Transition Layers in the Star-forming Region W43 , 2016, 1612.02428.

[28]  C. Federrath Magnetic field amplification in turbulent astrophysical plasmas , 2016, Journal of Plasma Physics.

[29]  V. Springel,et al.  A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics , 2016, 1606.02310.

[30]  D. Kandel,et al.  Extending velocity channel analysis for studying turbulence anisotropies , 2016, 1604.06102.

[31]  S. Reissl,et al.  Radiative transfer with POLARIS: I. Analysis of magnetic fields through synthetic dust continuum polarization measurements , 2016, 1604.05305.

[32]  A. Lazarian,et al.  RADIO SYNCHROTRON FLUCTUATION STATISTICS AS A PROBE OF MAGNETIZED INTERSTELLAR TURBULENCE , 2016, 1603.02751.

[33]  A. Sternberg,et al.  ANALYTIC H i-to-H2 PHOTODISSOCIATION TRANSITION PROFILES , 2016, 1601.02608.

[34]  A. Lazarian,et al.  PRINCIPAL COMPONENT ANALYSIS STUDIES OF TURBULENCE IN OPTICALLY THICK GAS , 2015, 1511.03712.

[35]  D. Eisenstein,et al.  Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms , 2015, 1506.04746.

[36]  R. Klessen,et al.  GRAVITATIONAL CONTRACTION VERSUS SUPERNOVA DRIVING AND THE ORIGIN OF THE VELOCITY DISPERSION–SIZE RELATION IN MOLECULAR CLOUDS , 2015, 1511.05602.

[37]  A. Lazarian,et al.  THE PHASE COHERENCE OF INTERSTELLAR DENSITY FLUCTUATIONS , 2015, 1511.03660.

[38]  P. Padoan,et al.  SUPERNOVA DRIVING. I. THE ORIGIN OF MOLECULAR CLOUD TURBULENCE , 2015, 1509.04663.

[39]  Min-Young Lee,et al.  THE LOGNORMAL PROBABILITY DISTRIBUTION FUNCTION OF THE PERSEUS MOLECULAR CLOUD: A COMPARISON OF HI AND DUST , 2015, 1509.02889.

[40]  D. Eisenstein,et al.  Computing the Three-Point Correlation Function of Galaxies in $\mathcal{O}(N^2)$ Time , 2015, 1506.02040.

[41]  F. Petit,et al.  H i-TO-H2 TRANSITIONS IN THE PERSEUS MOLECULAR CLOUD , 2015, 1505.06200.

[42]  Christoph Federrath,et al.  Inefficient star formation through turbulence, magnetic fields and feedback , 2015, 1504.03690.

[43]  F. Le Petit,et al.  H i-TO-H2 TRANSITIONS AND H i COLUMN DENSITIES IN GALAXY STAR-FORMING REGIONS , 2014, 1404.5042.

[44]  G. Kowal,et al.  OPACITY BROADENING OF 13CO LINEWIDTHS AND ITS EFFECT ON THE VARIANCE–SONIC MACH NUMBER RELATION , 2014, 1402.6702.

[45]  Mark R. Krumholz,et al.  The big problems in star formation: The star formation rate, stellar clustering, and the initial mass function , 2014, 1402.0867.

[46]  A. Lazarian,et al.  SUPERDIFFUSION OF COSMIC RAYS: IMPLICATIONS FOR COSMIC RAY ACCELERATION , 2013, 1308.3244.

[47]  M. Krumholz despotic – a new software library to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds , 2013, 1304.2404.

[48]  Lynn B. Reid,et al.  Pragmatic optimizations for better scientific utilization of large supercomputers , 2013, Int. J. High Perform. Comput. Appl..

[49]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[50]  Huirong Yan,et al.  COSMIC-RAY PARALLEL AND PERPENDICULAR TRANSPORT IN TURBULENT MAGNETIC FIELDS , 2013, 1307.1346.

[51]  A. Goodman,et al.  HIERARCHICAL STRUCTURE OF MAGNETOHYDRODYNAMIC TURBULENCE IN POSITION-POSITION-VELOCITY SPACE , 2012, 1206.4703.

[52]  Anshu Dubey,et al.  Optimization of multigrid based elliptic solver for large scale simulations in the FLASH code , 2012, Concurr. Comput. Pract. Exp..

[53]  A. Lazarian,et al.  THE COLUMN DENSITY VARIANCE– RELATIONSHIP , 2012 .

[54]  R. Klessen,et al.  A NEW DENSITY VARIANCE–MACH NUMBER RELATION FOR SUBSONIC AND SUPERSONIC ISOTHERMAL TURBULENCE , 2012, 1206.4524.

[55]  Alyssa A. Goodman,et al.  Principles of high‐dimensional data visualization in astronomy , 2012, 1205.4747.

[56]  M. Norman,et al.  THE TWO STATES OF STAR-FORMING CLOUDS , 2012, 1202.2594.

[57]  C. Klingenberg,et al.  VERTICAL STRUCTURE OF A SUPERNOVA-DRIVEN TURBULENT, MAGNETIZED INTERSTELLAR MEDIUM , 2012, 1202.0552.

[58]  Rahul Shetty,et al.  RADMC-3D: A multi-purpose radiative transfer tool , 2012 .

[59]  J. Peek,et al.  A HIGH-RESOLUTION STUDY OF THE H i–H2 TRANSITION ACROSS THE PERSEUS MOLECULAR CLOUD , 2011, 1110.2745.

[60]  Andreas Bauer,et al.  Shocking results without shocks: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations , 2011, 1109.4413.

[61]  A. Tielens The Molecular Universe , 2011, Proceedings of the International Astronomical Union.

[62]  R. Klessen,et al.  Modeling H2 formation in the turbulent ISM: Solenoidal versus compressive turbulent forcing , 2011, 1103.3056.

[63]  Christoph Federrath,et al.  A NEW JEANS RESOLUTION CRITERION FOR (M)HD SIMULATIONS OF SELF-GRAVITATING GAS: APPLICATION TO MAGNETIC FIELD AMPLIFICATION BY GRAVITY-DRIVEN TURBULENCE , 2011, 1102.0266.

[64]  Christian Klingenberg,et al.  A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear stability, implementation and tests , 2011, J. Comput. Phys..

[65]  Sandeep Koranne,et al.  Hierarchical Data Format 5 : HDF5 , 2011 .

[66]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[67]  Richard I. Klein,et al.  SUB-ALFVÉNIC NON-IDEAL MHD TURBULENCE SIMULATIONS WITH AMBIPOLAR DIFFUSION. II. COMPARISON WITH OBSERVATION, CLUMP PROPERTIES, AND SCALING TO PHYSICAL UNITS , 2010, 1007.2032.

[68]  Michael L. Norman,et al.  COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO , 2010 .

[69]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[70]  C. McKee,et al.  THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. III. A NEW METHOD FOR DETERMINING THE MOLECULAR CONTENT OF PRIMORDIAL AND DUSTY CLOUDS , 2009, 0908.0330.

[71]  Michael L. Norman,et al.  Piecewise parabolic method on a local stencil for magnetized supersonic turbulence simulation , 2009, J. Comput. Phys..

[72]  R. Klessen,et al.  Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.

[73]  G. Kowal,et al.  NUMERICAL TESTS OF FAST RECONNECTION IN WEAKLY STOCHASTIC MAGNETIC FIELDS , 2009, 0903.2052.

[74]  Hui Li,et al.  Cosmological AMR MHD with Enzo , 2009, 0902.2594.

[75]  A. Lazarian,et al.  Obtaining Spectra of Turbulent Velocity from Observations , 2008, 0811.0839.

[76]  G. Kowal,et al.  DENSITY STUDIES OF MHD INTERSTELLAR TURBULENCE: STATISTICAL MOMENTS, CORRELATIONS AND BISPECTRUM , 2008, 0811.0822.

[77]  Nickolay Y. Gnedin,et al.  MODELING MOLECULAR HYDROGEN AND STAR FORMATION IN COSMOLOGICAL SIMULATIONS , 2008, 0810.4148.

[78]  G. Bryan,et al.  DEPENDENCE OF INTERSTELLAR TURBULENT PRESSURE ON SUPERNOVA RATE , 2008, 0811.3747.

[79]  R. Klessen,et al.  The Density Probability Distribution in Compressible Isothermal Turbulence: Solenoidal versus Compressive Forcing , 2008, 0808.0605.

[80]  R. J. Reynolds,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE TURBULENT WARM IONIZED MEDIUM: EMISSION MEASURE DISTRIBUTION AND MHD SIMULATIONS , 2022 .

[81]  R. Klein,et al.  Sub-Alfvénic Nonideal MHD Turbulence Simulations with Ambipolar Diffusion. I. Turbulence Statistics , 2008, 0805.0597.

[82]  Yi Li,et al.  A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence , 2008, 0804.1703.

[83]  James M. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..

[84]  P. Ricker A Direct Multigrid Poisson Solver for Oct-Tree Adaptive Meshes , 2007, 0710.4397.

[85]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[86]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[87]  G. Kowal,et al.  Scaling Relations of Compressible MHD Turbulence , 2007, 0705.2464.

[88]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[89]  A. Mignone A simple and accurate Riemann solver for isothermal MHD , 2007, J. Comput. Phys..

[90]  G. Kowal,et al.  Density Fluctuations in MHD Turbulence: Spectra, Intermittency, and Topology , 2006, astro-ph/0608051.

[91]  C. Forest,et al.  Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  C. Forest,et al.  Intermittent magnetic field excitation by a turbulent flow of liquid sodium. , 2006, Physical review letters.

[93]  M. Mac Low,et al.  Turbulent Structure of a Stratified Supernova-driven Interstellar Medium , 2005, astro-ph/0601005.

[94]  S. Boldyrev On the Spectrum of Magnetohydrodynamic Turbulence , 2005, Physical review letters.

[95]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[96]  A. Lazarian,et al.  DENSITY SCALING AND ANISOTROPY IN SUPERSONIC MHD TURBULENCE , 2005 .

[97]  A. Lazarian,et al.  Density Scaling and Anisotropy in Supersonic Magnetohydrodynamic Turbulence , 2005, astro-ph/0502547.

[98]  D. Balsara,et al.  Amplification of Interstellar Magnetic Fields by Supernova-driven Turbulence , 2004 .

[99]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[100]  D. Balsara,et al.  Generation of Magnetic Fields in the Multi-phase ISM with Supernova-Driven Turbulence , 2004, astro-ph/0403660.

[101]  A. Lazarian,et al.  Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications , 2003, astro-ph/0301062.

[102]  A. Lazarian,et al.  Scattering of cosmic rays by magnetohydrodynamic interstellar turbulence. , 2002, Physical review letters.

[103]  D. Balsara Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001, astro-ph/0112150.

[104]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[105]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[106]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[107]  Leslie Greengard,et al.  A Fast Direct Solver for Elliptic Partial Differential Equations on Adaptively Refined Meshes , 1999, SIAM J. Sci. Comput..

[108]  A. Lazarian,et al.  Reconnection in a Weakly Stochastic Field , 1998, astro-ph/9811037.

[109]  M. M. Low The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds , 1998, astro-ph/9809177.

[110]  Richard I. Klein,et al.  The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .

[111]  B. Jones,et al.  The universality of the stellar initial mass function , 1997 .

[112]  Jr. Fleck,et al.  Scaling Relations for the Turbulent, Non--Self-gravitating, Neutral Component of the Interstellar Medium , 1996 .

[113]  John W. Armstrong,et al.  Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .

[114]  J. Bregman,et al.  Global Models of the Interstellar Medium in Disk Galaxies , 1995 .

[115]  Guohong Xu A new parallel N body gravity solver: TPM , 1994, astro-ph/9409021.

[116]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[117]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[118]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[119]  J. Higdon Density fluctuations in the interstellar medium: evidence for anisotropic magnetogasdynamic turbulen , 1984 .

[120]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[121]  W. Matthaeus,et al.  Turbulent generation of outward-traveling interplanetary Alfvenic fluctuations , 1983 .

[122]  John V. Shebalin,et al.  Anisotropy in MHD turbulence due to a mean magnetic field , 1983, Journal of Plasma Physics.

[123]  D. Montgomery,et al.  Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field , 1981 .

[124]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[125]  R. C. Bohlin,et al.  A survey of interstellar molecular hydrogen. I , 1977 .

[126]  H. Habing The interstellar radiation density between 912 A and 2400 A , 1968 .

[127]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[128]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .