MCMC methods for multi-response generalized linear mixed models

Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in closed form. Markov chain Monte Carlo methods solve this problem by sampling from a series of simpler conditional distributions that can be evaluated. The R package MCMCglmm implements such an algorithm for a range of model fitting problems. More than one response variable can be analyzed simultaneously, and these variables are allowed to follow Gaussian, Poisson, multi(bi)nominal, exponential, zero-inflated and censored distributions. A range of variance structures are permitted for the random effects, including interactions with categorical or continuous variables (i.e., random regression), and more complicated variance structures that arise through shared ancestry, either through a pedigree or through a phylogeny. Missing values are permitted in the response variable(s) and data can be known up to some level of measurement error as in meta-analysis. All simu- lation is done in C/ C++ using the CSparse library for sparse linear systems.

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  Fiona Steele,et al.  The use of simple reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel models with applications to discrete time survival models , 2009, Journal of the Royal Statistical Society. Series A,.

[3]  J. Hadfield,et al.  General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters , 2010, Journal of evolutionary biology.

[4]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[5]  Contents , 1997, Current Opinion in Neurobiology.

[6]  M. Wand,et al.  General design Bayesian generalized linear mixed models , 2006, math/0606491.

[7]  William G. Hill Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics . D ANIEL S ORENSEN AND D ANIEL G IANOLA . Springer-Verlag. 2002. 740 pages. ISBN 0 387 95440 6. Price €89.95. (hardback). , 2003 .

[8]  T. Meuwissen,et al.  Computing inbreeding coefficients in large populations , 1992, Genetics Selection Evolution.

[9]  J. Hadfield,et al.  Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour , 2007, Journal of evolutionary biology.

[10]  E. Demidenko,et al.  Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .

[11]  P. Gustafson,et al.  Conservative prior distributions for variance parameters in hierarchical models , 2006 .

[12]  William J. Browne,et al.  Bayesian and likelihood-based methods in multilevel modeling 1 A comparison of Bayesian and likelihood-based methods for fitting multilevel models , 2006 .

[13]  Eugene Demidenko Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .

[14]  Daniel Sorensen,et al.  Alternative implementations of Monte Carlo EM algorithms for likelihood inferences , 2000, Genetics Selection Evolution.

[15]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[16]  R. Griffiths,et al.  A DNA test to sex most birds , 1998, Molecular ecology.

[17]  D. Rubin,et al.  Parameter expansion to accelerate EM : The PX-EM algorithm , 1997 .

[18]  P. Damlen,et al.  Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .

[19]  Helen Brown,et al.  Applied Mixed Models in Medicine , 2000, Technometrics.

[20]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[21]  Patrik Waldmann,et al.  Easy and Flexible Bayesian Inference of Quantitative Genetic Parameters , 2009, Evolution; international journal of organic evolution.

[22]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[23]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[24]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[25]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[26]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[27]  Jun S. Liu,et al.  Parameter Expansion for Data Augmentation , 1999 .

[28]  Mary Kathryn Cowles,et al.  Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models , 1996, Stat. Comput..

[29]  Timothy A. Davis,et al.  Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2) , 2006 .

[30]  Xiao-Li Meng,et al.  The Art of Data Augmentation , 2001 .

[31]  Robin Thompson,et al.  ASREML user guide release 1.0 , 2002 .

[32]  Elja Arjas,et al.  Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. , 2008, Ecology.

[33]  Daniel Sorensen,et al.  A useful reparameterisation to obtain samples from conditional inverse Wishart distributions , 1999, Genetics Selection Evolution.

[34]  A. Gelman,et al.  Using Redundant Parameterizations to Fit Hierarchical Models , 2008 .

[35]  C. R. Henderson A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values , 1976 .

[36]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[37]  Jarrod Had MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package , 2010 .