Centrally expressed Cav3.2 T-type calcium channel is critical for the initiation and maintenance of neuropathic pain

Cav3.2 T-type calcium channel is a major molecular actor of neuropathic pain in peripheral sensory neurons, but its involvement at the supra-spinal level is almost unknown. In the Anterior Pretectum (APT), a hub of connectivity of the somatosensory system involved in pain perception, we show that Cav3.2 channels are expressed in a sub-population of GABAergic neurons co-expressing parvalbumin (PV). In these PV-expressing neurons, Cav3.2 channels contribute to a high frequency bursting activity, which is increased in the spared nerve injury model of neuropathy. Specific deletion of Cav3.2 channels in APT neurons reduced both the initiation and maintenance of mechanical and cold allodynia. These data are a direct demonstration that centrally expressed Cav3.2 channels also play a fundamental role in pain pathophysiology.

[1]  J. Rossier,et al.  Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity , 2021, eLife.

[2]  Georgios P. Foustoukos,et al.  Anatomically and functionally distinct thalamocortical inputs to primary and secondary mouse whisker somatosensory cortices , 2020, Nature Communications.

[3]  Patrick L. Sheets,et al.  Sex-Specific Disruption of Distinct mPFC Inhibitory Neurons in Spared-Nerve Injury Model of Neuropathic Pain. , 2020, Cell reports.

[4]  Fengyu Liu,et al.  Upregulation of Cav3.2 T-type calcium channels in adjacent intact L4 dorsal root ganglion neurons in neuropathic pain rats with L5 spinal nerve ligation , 2019, Neuroscience Research.

[5]  The Low-Threshold Calcium Spike , 2019, Cellular Biophysics and Modeling.

[6]  W. A. Prado,et al.  The antinociceptive effect of anterior pretectal nucleus stimulation is mediated by distinct neurotransmitter mechanisms in descending pain pathways , 2019, Brain Research Bulletin.

[7]  A. Moqrich,et al.  Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons , 2019, Scientific Reports.

[8]  B. Cauli,et al.  Single Cell Multiplex Reverse Transcription Polymerase Chain Reaction After Patch-clamp. , 2018, Journal of visualized experiments : JoVE.

[9]  Alexander E. Dityatev,et al.  The Low-Threshold Calcium Channel Cav3.2 Mediates Burst Firing of Mature Dentate Granule Cells , 2018, Cerebral cortex.

[10]  A. Lüthi,et al.  Suppression of Sleep Spindle Rhythmogenesis in Mice with Deletion of CaV3.2 and CaV3.3 T-type Ca(2+) Channels. , 2016, Sleep.

[11]  S. Laffray,et al.  T-type calcium channels in neuropathic pain , 2016, Pain.

[12]  Descending mechanisms activated by the anterior pretectal nucleus initiate but do not maintain neuropathic pain in rats , 2015, European journal of pain.

[13]  W. A. Prado,et al.  The ventral portion of the anterior pretectal nucleus controls descending mechanisms that initiate neuropathic pain in rats , 2015, Clinical and experimental pharmacology & physiology.

[14]  Chong Chen,et al.  Alleviation of neuropathic pain by regulating T-type calcium channels in rat anterior cingulate cortex , 2015, Molecular pain.

[15]  A. Moqrich,et al.  The Low-Threshold Calcium Channel Cav3.2 Determines Low-Threshold Mechanoreceptor Function. , 2015, Cell reports.

[16]  Chong Chen,et al.  Alleviation of neuropathic pain by regulating T-type calcium channels in rat anterior cingulate cortex , 2015, Molecular pain.

[17]  T. Gudermann,et al.  Mibefradil represents a new class of benzimidazole TRPM7 channel agonists , 2015, Pflügers Archiv - European Journal of Physiology.

[18]  Boyoung Lee,et al.  Rebound burst firing in the reticular thalamus is not essential for pharmacological absence seizures in mice , 2014, Proceedings of the National Academy of Sciences.

[19]  C. Woods,et al.  Painful and painless channelopathies , 2014, The Lancet Neurology.

[20]  A. Eschalier,et al.  Cav3.2 calcium channels: The key protagonist in the supraspinal effect of paracetamol , 2014, PAIN®.

[21]  V. Crunelli,et al.  The many faces of T-type calcium channels , 2014, Pflügers Archiv - European Journal of Physiology.

[22]  I. Decosterd,et al.  The spared nerve injury model of neuropathic pain. , 2012, Methods in molecular biology.

[23]  Chris J. McBain,et al.  A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity , 2011, The Journal of Neuroscience.

[24]  Ya-Ting Chang,et al.  Cav3.2 T-Type Ca2+ Channel-Dependent Activation of ERK in Paraventricular Thalamus Modulates Acid-Induced Chronic Muscle Pain , 2010, The Journal of Neuroscience.

[25]  Y. Maeda,et al.  Upregulation of Cav3.2 T-type calcium channels targeted by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain , 2010, PAIN.

[26]  A. Keller,et al.  Abnormal anterior pretectal nucleus activity contributes to central pain syndrome. , 2010, Journal of neurophysiology.

[27]  V. Jevtovic-Todorovic,et al.  In vivo silencing of the CaV3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy , 2009, PAIN®.

[28]  Susana Q. Lima,et al.  PINP: A New Method of Tagging Neuronal Populations for Identification during In Vivo Electrophysiological Recording , 2009, PloS one.

[29]  A. Keller,et al.  Zona incerta: a role in central pain. , 2009, Journal of neurophysiology.

[30]  V. Jevtovic-Todorovic,et al.  Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. , 2008, Journal of neurophysiology.

[31]  M. C. Liang,et al.  T-type calcium channels , 2008 .

[32]  H. Bokor,et al.  Heterogeneous output pathways link the anterior pretectal nucleus with the zona incerta and the thalamus in rat , 2008, The Journal of comparative neurology.

[33]  K. Campbell,et al.  Attenuated pain responses in mice lacking CaV3.2 T‐type channels , 2007, Genes, brain, and behavior.

[34]  Martin Deschênes,et al.  Feedforward Inhibitory Control of Sensory Information in Higher-Order Thalamic Nuclei , 2005, The Journal of Neuroscience.

[35]  H. Bokor,et al.  Selective GABAergic Control of Higher-Order Thalamic Relays , 2005, Neuron.

[36]  Olivier Poirot,et al.  Silencing of the Cav3.2 T‐type calcium channel gene in sensory neurons demonstrates its major role in nociception , 2005, The EMBO journal.

[37]  W. A. Prado,et al.  Participation of brainstem nuclei in the pronociceptive effect of lesion or neural block of the anterior pretectal nucleus in a rat model of incisional pain , 2004, Neuropharmacology.

[38]  H. Zhuang,et al.  NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-Benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: A New Selective Inhibitor of T-Type Calcium Channels , 2004, Journal of Pharmacology and Experimental Therapeutics.

[39]  Daesoo Kim,et al.  Thalamic Control of Visceral Nociception Mediated by T-Type Ca2+ Channels , 2003, Science.

[40]  Involvement of the anterior pretectal nucleus in the control of persistent pain: a behavioral and c-Fos expression study in the rat , 2003, PAIN®.

[41]  P. Siddall,et al.  Thalamic neuronal activity in rats with mechanical allodynia following contusive spinal cord injury , 2003, Neuroscience.

[42]  P. Barthó,et al.  Selective GABAergic innervation of thalamic nuclei from zona incerta , 2002, The European journal of neuroscience.

[43]  Edith Hamel,et al.  5-HT3 Receptors Mediate Serotonergic Fast Synaptic Excitation of Neocortical Vasoactive Intestinal Peptide/Cholecystokinin Interneurons , 2002, The Journal of Neuroscience.

[44]  Daesoo Kim,et al.  Lack of the Burst Firing of Thalamocortical Relay Neurons and Resistance to Absence Seizures in Mice Lacking α1G T-Type Ca2+ Channels , 2001, Neuron.

[45]  C. Vierck,et al.  Functional plasticity in primate somatosensory thalamus following chronic lesion of the ventral lateral spinal cord , 2000, Neuroscience.

[46]  C. Woolf,et al.  Spared nerve injury: an animal model of persistent peripheral neuropathic pain , 2000, Pain.

[47]  R. Llinás,et al.  Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  E. Perez-Reyes,et al.  Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H. , 1999, Biophysical journal.

[49]  Edmund M. Talley,et al.  Differential Distribution of Three Members of a Gene Family Encoding Low Voltage-Activated (T-Type) Calcium Channels , 1999, The Journal of Neuroscience.

[50]  M. C. Angulo,et al.  Molecular and Physiological Diversity of Cortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[51]  A. Morel,et al.  Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. , 1996, Brain : a journal of neurology.

[52]  M. G. Terenzi,et al.  Anterior pretectal nucleus facilitation of superficial dorsal horn neurones and modulation of deafferentation pain in the rat. , 1995, The Journal of physiology.

[53]  T. Yaksh,et al.  Quantitative assessment of tactile allodynia in the rat paw , 1994, Journal of Neuroscience Methods.

[54]  H. Rees,et al.  The anterior pretectal nucleus: a proposed role in sensory processing , 1993, Pain.

[55]  M. G. Terenzi,et al.  The pontine parabrachial region mediates some of the descending inhibitory effects of stimulating the anterior pretectal nucleus , 1992, Brain Research.

[56]  J. Rossier,et al.  AMPA receptor subunits expressed by single purkinje cells , 1992, Neuron.

[57]  G. Foster,et al.  The antinociception evoked by anterior pretectal nucleus stimulation is partially dependent upon ventrolateral medullary neurones , 1991, Pain.

[58]  Saul I. Gass,et al.  The Many Faces of OR , 1991 .

[59]  M. Roberts,et al.  Antinociceptive effects of dorsal column stimulation in the rat: involvement of the anterior pretectal nucleus. , 1989, The Journal of physiology.

[60]  Jonathan O. Dostrovsky,et al.  Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain , 1989, Brain Research.

[61]  M. Roth A quantitative assessment , 1987 .

[62]  M. Roberts,et al.  The antinociceptive effects of stimulating the pretectal nucleus of the rat , 1986, Pain.

[63]  W. A. Prado,et al.  An assessment of the antinociceptive and aversive effects of stimulating identified sites in the rat brain , 1985, Brain Research.