Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter - Update

[1]  G. Orton,et al.  Colour and tropospheric cloud structure of Jupiter from MUSE/VLT: Retrieving a universal chromophore , 2019, Icarus.

[2]  P. Irwin,et al.  Effectively Calculating Gaseous Absorption in Radiative Transfer Models of Exoplanetary and Brown Dwarf Atmospheres , 2019, 1903.03997.

[3]  J. Tennyson,et al.  Improved potential energy surface and spectral assignments for ammonia in the near-infrared region , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[4]  P. Bernath,et al.  Analysis of the red and green optical absorption spectrum of gas phase ammonia , 2018 .

[5]  K. Baines,et al.  A possibly universal red chromophore for modeling color variations on Jupiter , 2017, 1706.02779.

[6]  Ahmed F. Al-Refaie,et al.  The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres , 2016, 1603.05890.

[7]  G. Orton,et al.  Reanalysis of Uranus' cloud scattering properties from IRTF/SpeX observations using a self-consistent scattering cloud retrieval scheme , 2015, 1601.02814.

[8]  J. Tennyson,et al.  Spectrum of hot methane in astronomical objects using a comprehensive computed line list , 2014, Proceedings of the National Academy of Sciences.

[9]  J. Manners,et al.  Accuracy tests of radiation schemes used in hot Jupiter global circulation models , 2014, 1402.0814.

[10]  Jonathan Tennyson,et al.  ExoMol line lists - III. An improved hot rotation-vibration line list for HCN and HNC , 2013, 1311.1328.

[11]  K. Baines,et al.  Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter's Great Red Spot , 2012 .

[12]  J. Tennyson,et al.  ExoMol: molecular line lists for exoplanet and other atmospheres , 2012, 1204.0124.

[13]  J. Tennyson,et al.  Towards efficient refinement of molecular potential energy surfaces: Ammonia as a case study , 2011 .

[14]  J. Tennyson,et al.  A variationally computed line list for hot NH3 , 2010, 1011.1569.

[15]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[16]  Kelly Chance,et al.  An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared , 2010 .

[17]  M. Tomasko,et al.  Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data , 2010 .

[18]  S. Calcutt,et al.  Band parameters for self-broadened ammonia gas in the range 0.74 to 5.24 μm to support measurements of the atmosphere of the planet Jupiter , 2008 .

[19]  S. Calcutt,et al.  The NEMESIS planetary atmosphere radiative transfer and retrieval tool , 2008 .

[20]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[21]  K. Banse,et al.  Data reduction pipelines for the Very Large Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[22]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[23]  Steve Matousek,et al.  The Juno New Frontiers mission , 2005 .

[24]  T. Fouchet,et al.  Retrievals of Jovian tropospheric phosphine from CassiniKIRS , 2004 .

[25]  J. Orphal,et al.  Temperature dependence of pressure broadening of NH3 perturbed by H2 and N2 , 2004 .

[26]  Keeyoon Sung,et al.  Measurements of line intensities and half-widths in the 10-μm bands of 14NH3 , 2004 .

[27]  G. Thuillier,et al.  The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .

[28]  M. D. Rosa,et al.  New results for the temperature dependence of self-broadening and shift in the v2 ammonia band , 2000 .

[29]  A. Borysow,et al.  Semi-empirical Model of Collision-Induced Absorption Spectra of H2–H2 Complexes in the Second Overtone Band of Hydrogen at Temperatures from 50 to 500 K , 2000 .

[30]  W. B. Johnston,et al.  Band parameters and k coefficients for self-broadened ammonia in the range 4000-11,000 cm -1 . , 1999 .

[31]  D. Hunten,et al.  Helium in Jupiter's atmosphere: Results from the Galileo probe Helium Interferometer Experiment , 1998 .

[32]  E. Karkoschka Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum , 1994 .

[33]  Giovanni Buffa,et al.  N2, O2, H2, Ar and He broadening in the ν1 band of NH3 , 1993 .

[34]  Alan S. Pine,et al.  Self broadening in the v1 band of NH3 , 1993 .

[35]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[36]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[37]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs at temperatures from 18 to 7000 K. II - Overtone and hot bands , 1989 .

[38]  C. E. Keffer,et al.  Pressure broadening of ammonia lines in the 6475åband at room and low temperatures , 1986 .

[39]  Wm. Hayden Smith,et al.  Hydrogen broadening of vibrational-rotational transitions of ammonia lying near 6450 Å , 1985 .

[40]  L. Giver,et al.  A laboratory atlas of the 5ν1 NH3 absorption band at 6475 Å with applications to Jupiter and Saturn , 1975 .

[41]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[42]  G. Plass,et al.  Matrix operator theory of radiative transfer. 1: rayleigh scattering. , 1973, Applied optics.

[43]  J. Hansen Multiple Scattering of Polarized Light in Planetary Atmospheres Part II. Sunlight Reflected by Terrestrial Water Clouds , 1971 .

[44]  R. Goody,et al.  A statistical model for water‐vapour absorption , 1952 .

[45]  R. Garland Modelling the Spectra of Brown Dwarfs , 2018 .

[46]  S. Calcutt,et al.  Analysis of gaseous ammonia (NH 3 ) absorption in the visible spectrum of Jupiter , 2017 .

[47]  M. R. Cherkasov Broadening and collisional interference of lines in the IR spectra of ammonia: Self-broadening in the ν1 band , 2017 .

[48]  Laurence S. Rothman,et al.  H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2 , 2016 .

[49]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[50]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[51]  M. Sheik-Bahae NONLINEAR OPTICS, BASICS | Kramers–Krönig Relations in Nonlinear Optics , 2005 .

[52]  A. Borysow,et al.  Modeling of Collision-Induced Infrared Absorption Spectra of H2 Pairs in the First Overtone Band at Temperatures from 20 to 500 K , 1995 .

[53]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs involving 0-1 vibrational transitions and temperatures from 18 to 7000 K , 1989 .

[54]  K. Lehmann,et al.  Spectroscopy and intramolecular dynamics of highly excited vibrational states of NH3 , 1988 .

[55]  T. Owen,et al.  The visible bands of ammonia - Band strengths, curves of growth, and the spatial distribution of ammonia on Jupiter , 1980 .

[56]  V. Oinas,et al.  Atmospheric Radiation , 1963, Nature.