Joint search for isolated sources and an unresolved confusion background in pulsar timing array data
暂无分享,去创建一个
[1] T. Littenberg,et al. Global analysis of the gravitational wave signal from Galactic binaries , 2020, Physical Review D.
[2] D. Stinebring,et al. The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries , 2018, The Astrophysical Journal.
[3] T. Joseph W. Lazio,et al. The astrophysics of nanohertz gravitational waves , 2018, The Astronomy and Astrophysics Review.
[4] P. S. Ray,et al. The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.
[5] Stephen R. Taylor,et al. The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.
[6] Lars Hernquist,et al. Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays , 2017, 1711.00075.
[7] S. Burke-Spolaor,et al. The local nanohertz gravitational-wave landscape from supermassive black hole binaries , 2017, 1708.03491.
[8] K. Chatziioannou,et al. Constructing gravitational waves from generic spin-precessing compact binary inspirals , 2017, 1703.03967.
[9] R. Karuppusamy,et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.
[10] D. Stinebring,et al. The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.
[11] J. Gair,et al. European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.
[12] Yan Wang,et al. THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.
[13] J. Gair,et al. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background. , 2015, Physical review letters.
[14] N. Cornish,et al. When is a gravitational-wave signal stochastic? , 2015, 1505.08084.
[15] Delphine Perrodin,et al. European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.
[16] J. Gair,et al. Expected properties of the first gravitational wave signal detected with pulsar timing arrays , 2015, 1503.04803.
[17] M. S. Shahriar,et al. Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.
[18] Neil J. Cornish,et al. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.
[19] K. Chatziioannou,et al. Detection and Parameter Estimation of Gravitational Waves from Compact Binary Inspirals with Analytical Double-Precessing Templates , 2014, 1404.3180.
[20] I. Mandel,et al. Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays , 2013, 1306.5394.
[21] X. Siemens,et al. The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.
[22] N. Cornish,et al. Pulsar timing array analysis for black hole backgrounds , 2013, 1305.0326.
[23] R. Manchester,et al. DOES A “STOCHASTIC” BACKGROUND OF GRAVITATIONAL WAVES EXIST IN THE PULSAR TIMING BAND? , 2012, 1210.3854.
[24] S. Babak,et al. Resolving multiple supermassive black hole binaries with pulsar timing arrays II: genetic algorithm implementation , 2012, 1210.2396.
[25] D. Hastie,et al. Model choice using reversible jump Markov chain Monte Carlo , 2012 .
[26] X. Siemens,et al. OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS , 2012, 1204.4218.
[27] L. G. Boté,et al. Laser Interferometer Space Antenna , 2012 .
[28] S. Babak,et al. Resolving multiple supermassive black hole binaries with pulsar timing arrays , 2011, 1112.1075.
[29] T. Littenberg. A Detection Pipeline for Galactic Binaries in LISA Data , 2011, 1106.6355.
[30] A. Sesana,et al. Gas‐driven massive black hole binaries: signatures in the nHz gravitational wave background , 2010, 1002.0584.
[31] D. Stinebring,et al. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.
[32] G. Hobbs. The Parkes Pulsar Timing Array , 2009, 1307.2629.
[33] Y. Levin,et al. On measuring the gravitational-wave background using Pulsar Timing Arrays , 2008, 0809.0791.
[34] L. Price,et al. Optimal strategies for gravitational wave stochastic background searches in pulsar timing data , 2008, 0809.0701.
[35] A. Vecchio,et al. The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.
[36] Robert B. Gramacy,et al. Importance tempering , 2007, Stat. Comput..
[37] J. C. Cornish. Solution to the galactic foreground problem for LISA , 2006, astro-ph/0611546.
[38] M. Sambridge,et al. Trans-dimensional inverse problems, model comparison and the evidence , 2006 .
[39] Chongqing,et al. The Parkes Pulsar Timing Array Project , 2006, Publications of the Astronomical Society of Australia.
[40] N. Christensen,et al. Bayesian modeling of source confusion in LISA data , 2005, gr-qc/0506055.
[41] N. Cornish,et al. Characterizing the galactic gravitational wave background with LISA , 2005, gr-qc/0504071.
[42] E. Phinney. A Practical Theorem on Gravitational Wave Backgrounds , 2001, astro-ph/0108028.
[43] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[44] R. Hellings,et al. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .
[45] S. Klimenko,et al. Advanced LIGO , 2014, 1411.4547.
[46] K. Popper. On Measuring the Gravitational-Wave Background Using Pulsar Timing Arrays , 2014 .
[47] P. Green,et al. Reversible jump MCMC , 2009 .
[48] D. Mackay,et al. Bayesian methods for adaptive models , 1992 .