Joint search for isolated sources and an unresolved confusion background in pulsar timing array data

Supermassive black hole binaries are the most promising source of gravitational-waves in the frequency band accessible to pulsar timing arrays. Most of these binaries will be too distant to detect individually, but together they will form an approximately stochastic background that can be detected by measuring the correlation pattern induced between pairs of pulsars. A small number of nearby and especially massive systems may stand out from this background and be detected individually. Analyses have previously been developed to search for stochastic signals and isolated signals separately. Here we present BayesHopper, an algorithm capable of jointly searching for both signal components simultaneously using trans-dimensional Bayesian inference. Our implementation uses the reversible jump Markov chain Monte Carlo method for sampling the relevant parameter space with changing dimensionality. We have tested BayesHopper on various simulated datasets. We find that it gives results consistent with fixed-dimensional methods when tested on data with a stochastic background or data with a single binary. For the full problem of analyzing a dataset with both a background and multiple black hole binaries, we find two kinds of interactions between the binary and background components. First, the background effectively increases the noise level, thus making individual binary signals less significant. Second, weak binary signals can be absorbed by the background model due to the natural parsimony of Bayesian inference. Because of its flexible model structure, we anticipate that BayesHopper will outperform existing approaches when applied to realistic data sets produced from population synthesis models.

[1]  T. Littenberg,et al.  Global analysis of the gravitational wave signal from Galactic binaries , 2020, Physical Review D.

[2]  D. Stinebring,et al.  The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries , 2018, The Astrophysical Journal.

[3]  T. Joseph W. Lazio,et al.  The astrophysics of nanohertz gravitational waves , 2018, The Astronomy and Astrophysics Review.

[4]  P. S. Ray,et al.  The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.

[5]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[6]  Lars Hernquist,et al.  Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays , 2017, 1711.00075.

[7]  S. Burke-Spolaor,et al.  The local nanohertz gravitational-wave landscape from supermassive black hole binaries , 2017, 1708.03491.

[8]  K. Chatziioannou,et al.  Constructing gravitational waves from generic spin-precessing compact binary inspirals , 2017, 1703.03967.

[9]  R. Karuppusamy,et al.  High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.

[10]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[11]  J. Gair,et al.  European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.

[12]  Yan Wang,et al.  THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.

[13]  J. Gair,et al.  Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background. , 2015, Physical review letters.

[14]  N. Cornish,et al.  When is a gravitational-wave signal stochastic? , 2015, 1505.08084.

[15]  Delphine Perrodin,et al.  European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.

[16]  J. Gair,et al.  Expected properties of the first gravitational wave signal detected with pulsar timing arrays , 2015, 1503.04803.

[17]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[18]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[19]  K. Chatziioannou,et al.  Detection and Parameter Estimation of Gravitational Waves from Compact Binary Inspirals with Analytical Double-Precessing Templates , 2014, 1404.3180.

[20]  I. Mandel,et al.  Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays , 2013, 1306.5394.

[21]  X. Siemens,et al.  The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.

[22]  N. Cornish,et al.  Pulsar timing array analysis for black hole backgrounds , 2013, 1305.0326.

[23]  R. Manchester,et al.  DOES A “STOCHASTIC” BACKGROUND OF GRAVITATIONAL WAVES EXIST IN THE PULSAR TIMING BAND? , 2012, 1210.3854.

[24]  S. Babak,et al.  Resolving multiple supermassive black hole binaries with pulsar timing arrays II: genetic algorithm implementation , 2012, 1210.2396.

[25]  D. Hastie,et al.  Model choice using reversible jump Markov chain Monte Carlo , 2012 .

[26]  X. Siemens,et al.  OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS , 2012, 1204.4218.

[27]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[28]  S. Babak,et al.  Resolving multiple supermassive black hole binaries with pulsar timing arrays , 2011, 1112.1075.

[29]  T. Littenberg A Detection Pipeline for Galactic Binaries in LISA Data , 2011, 1106.6355.

[30]  A. Sesana,et al.  Gas‐driven massive black hole binaries: signatures in the nHz gravitational wave background , 2010, 1002.0584.

[31]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[32]  G. Hobbs The Parkes Pulsar Timing Array , 2009, 1307.2629.

[33]  Y. Levin,et al.  On measuring the gravitational-wave background using Pulsar Timing Arrays , 2008, 0809.0791.

[34]  L. Price,et al.  Optimal strategies for gravitational wave stochastic background searches in pulsar timing data , 2008, 0809.0701.

[35]  A. Vecchio,et al.  The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.

[36]  Robert B. Gramacy,et al.  Importance tempering , 2007, Stat. Comput..

[37]  J. C. Cornish Solution to the galactic foreground problem for LISA , 2006, astro-ph/0611546.

[38]  M. Sambridge,et al.  Trans-dimensional inverse problems, model comparison and the evidence , 2006 .

[39]  Chongqing,et al.  The Parkes Pulsar Timing Array Project , 2006, Publications of the Astronomical Society of Australia.

[40]  N. Christensen,et al.  Bayesian modeling of source confusion in LISA data , 2005, gr-qc/0506055.

[41]  N. Cornish,et al.  Characterizing the galactic gravitational wave background with LISA , 2005, gr-qc/0504071.

[42]  E. Phinney A Practical Theorem on Gravitational Wave Backgrounds , 2001, astro-ph/0108028.

[43]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[44]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[45]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[46]  K. Popper On Measuring the Gravitational-Wave Background Using Pulsar Timing Arrays , 2014 .

[47]  P. Green,et al.  Reversible jump MCMC , 2009 .

[48]  D. Mackay,et al.  Bayesian methods for adaptive models , 1992 .