Combinatorial Interpretations of a Generalization of the Genocchi Numbers
暂无分享,去创建一个
[1] John Riordan,et al. The divided central differences of zero , 1963 .
[2] Gunter Bach. Über eine Verallgemeinerung der Differenzengleichung der Stirlingschen Zahlen 2. Art und einige damit zusammenhängende Fragen. , 1968 .
[3] D. Foata,et al. Theorie Geometrique des Polynomes Euleriens , 1970 .
[4] J. M. Gandhi,et al. A Conjectured Representation of Genocchi Numbers , 1970 .
[5] Dominique Dumont. Sur une conjecture de Gandhi concernant les nombres de Genocchi , 1972, Discret. Math..
[6] John Riordan,et al. Proof of a conjecture on Genocchi numbers , 1973, Discrete Mathematics.
[7] Dominique Dumont,et al. Interprétations combinatoires des nombres de Genocchi , 1974 .
[8] Dominique Dumont,et al. Une propriété de symétrie des nombres de Genocchi , 1976 .
[9] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[10] Gérard Viennot,et al. A Combinatorial Interpretation of the Seidel Generation of Genocchi Numbers , 1980 .
[11] M. W. Shields. An Introduction to Automata Theory , 1988 .
[12] Dominique Dumont,et al. Dérangements et nombres de Genocchi , 1994, Discret. Math..
[13] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[14] D. Dumont,et al. Derangements and Genocchi numbers , 1994 .
[15] Sheng Yu. Regular Languages , 1997, Handbook of Formal Languages.
[16] Jeffrey Shallit,et al. On the Number of Distinct Languages Accepted by Finite Automata with n States , 2002, DCFS.