Multidimensional Rational Covariance Extension with Applications to Spectral Estimation and Image Compression

The rational covariance extension problem (RCEP) is an important problem in systems and control occurring in such diverse fields as control, estimation, system identification, and signal and image processing, leading to many fundamental theoretical questions. In fact, this inverse problem is a key component in many identification and signal processing techniques and plays a fundamental role in prediction, analysis, and modeling of systems and signals. It is well known that the RCEP can be reformulated as a (truncated) trigonometric moment problem subject to a rationality condition. In this paper we consider the more general multidimensional trigonometric moment problem with a similar rationality constraint. This generalization creates many interesting new mathematical questions and also provides new insights into the original one-dimensional problem. A key concept in this approach is the complete smooth parameterization of all solutions, allowing solutions to be tuned to satisfy additional design specific...

[1]  C. Byrnes,et al.  A Convex Optimization Approach to the Rational Covariance Extension Problem , 1999 .

[2]  R. Cooke Real and Complex Analysis , 2011 .

[3]  Anders Lindquist,et al.  The Moment Problem for Rational Measures: Convexity in the Spirit of Krein , 2009 .

[4]  Paul E. Schupp,et al.  Multidimensional Systems Theory and Applications , 1977 .

[5]  James H. McClellan,et al.  The extension of Pisarenko's method to multiple dimensions , 1982, ICASSP.

[6]  Giovanna Fanizza,et al.  Modeling and Model Reduction by Analytic Interpolation and Optimization , 2008 .

[7]  Mattia Zorzi,et al.  A New Family of High-Resolution Multivariate Spectral Estimators , 2012, IEEE Transactions on Automatic Control.

[8]  C. Byrnes,et al.  A complete parameterization of all positive rational extensions of a covariance sequence , 1995, IEEE Trans. Autom. Control..

[9]  S. Lang,et al.  Spectral estimation for sensor arrays , 1983 .

[10]  Tryphon T. Georgiou,et al.  Kullback-Leibler approximation of spectral density functions , 2003, IEEE Trans. Inf. Theory.

[11]  Anders Lindquist,et al.  The Circulant Rational Covariance Extension Problem: The Complete Solution , 2012, IEEE Transactions on Automatic Control.

[12]  Michele Pavon,et al.  Hellinger Versus Kullback–Leibler Multivariable Spectrum Approximation , 2007, IEEE Transactions on Automatic Control.

[13]  Francesca P. Carli,et al.  A Maximum Entropy Solution of the Covariance Extension Problem for Reciprocal Processes , 2011, IEEE Transactions on Automatic Control.

[14]  Johan Karlsson,et al.  The Multidimensional Moment Problem with Complexity Constraint , 2015, 1504.03626.

[15]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[16]  John W. Woods,et al.  Two-dimensional Markov spectral estimation , 1976, IEEE Trans. Inf. Theory.

[17]  Francesca P. Carli,et al.  Modelling and Simulation of Images by Reciprocal Processes , 2008, Tenth International Conference on Computer Modeling and Simulation (uksim 2008).

[18]  R. Kálmán Realization of Covariance Sequences , 1982 .

[19]  J. Cadzow Maximum Entropy Spectral Analysis , 2006 .

[20]  A. Schinzel Polynomials with Special Regard to Reducibility: Polynomials over a number field , 2000 .

[21]  K. Mahler,et al.  On Some Inequalities for Polynomials in Several Variables , 1962 .

[22]  A. Krener,et al.  Modeling and estimation of discrete-time Gaussian reciprocal processes , 1990 .

[23]  Anders Lindquist,et al.  Cepstral coefficients, covariance lags, and pole-zero models for finite data strings , 2001, IEEE Trans. Signal Process..

[24]  Tryphon T. Georgiou,et al.  Realization of power spectra from partial covariance sequences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[25]  G. Crooks On Measures of Entropy and Information , 2015 .

[26]  J. McClellan,et al.  Multidimensional MEM spectral estimation , 1982 .

[27]  E. Avventi Spectral Moment Problems: Generalizations, Implementation and Tuning , 2011 .

[28]  Johan Karlsson,et al.  Stability-Preserving Rational Approximation Subject to Interpolation Constraints , 2008, IEEE Transactions on Automatic Control.

[29]  Tryphon T. Georgiou,et al.  Solution of the general moment problem via a one-parameter imbedding , 2005, IEEE Transactions on Automatic Control.

[30]  C. Byrnes,et al.  The Generalized Moment Problem with Complexity Constraint , 2006 .

[31]  A. Chiuso,et al.  Reciprocal realization and modeling of textured images , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[32]  B. F. Logan,et al.  The Fourier reconstruction of a head section , 1974 .

[33]  Michael P. Ekstrom,et al.  Digital Image Processing Techniques , 1984 .

[34]  John H. L. Hansen,et al.  Discrete-Time Processing of Speech Signals , 1993 .

[35]  Hendra Ishwara Nurdin New results on the rational covariance extension problem with degree constraint , 2006, Syst. Control. Lett..

[36]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[37]  Michele Pavon,et al.  A Globally Convergent Matricial Algorithm for Multivariate Spectral Estimation , 2008, IEEE Transactions on Automatic Control.

[38]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[39]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[40]  M. Ekstrom,et al.  Two-dimensional spectral factorization with applications in recursive digital filtering , 1976 .

[41]  Anders Lindquist,et al.  From Finite Covariance Windows to Modeling Filters: A Convex Optimization Approach , 2001, SIAM Rev..

[42]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[43]  Tryphon T. Georgiou,et al.  The interpolation problem with a degree constraint , 1999, IEEE Trans. Autom. Control..

[44]  V. Tkachev,et al.  Positive trigonometric polynomials , 2003, math/0301038.

[45]  R. Remmert,et al.  Theory of Complex Functions , 1990 .

[46]  T. Kailath,et al.  Multidimensional maximum-entropy covariance extension , 1989, IEEE Trans. Inf. Theory.

[47]  Anders Lindquist,et al.  Matrix-valued Nevanlinna-Pick interpolation with complexity constraint: an optimization approach , 2003, IEEE Trans. Autom. Control..

[48]  M. Pavon,et al.  Further Results on the Byrnes-Georgiou-Lindquist Generalized Moment Problem , 2007 .

[49]  P. Yip,et al.  Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .

[50]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[51]  Johan Karlsson,et al.  The multidimensional circulant rational covariance extension problem: Solutions and applications in image compression , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[52]  Anders Lindquist,et al.  Identifiability and Well-Posedness of Shaping-Filter Parameterizations: A Global Analysis Approach , 2002, SIAM J. Control. Optim..

[53]  Enrico Avventi,et al.  Approximative covariance interpolation with a quadratic penalty , 2007, 2007 46th IEEE Conference on Decision and Control.

[54]  Anders Lindquist,et al.  On the multivariate circulant rational covariance extension problem , 2013, 52nd IEEE Conference on Decision and Control.

[55]  B. Dickinson,et al.  Two-dimensional Markov spectrum estimates need not exist , 1980, IEEE Trans. Inf. Theory.

[56]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[57]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[58]  Elias M. Stein,et al.  Fourier Analysis: An Introduction , 2003 .

[59]  G. Picci,et al.  Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification , 2016 .

[60]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[61]  Johan Karlsson,et al.  A fast solver for the circulant rational covariance extension problem , 2015, 2015 European Control Conference (ECC).

[62]  Anders Lindquist,et al.  A Convex Optimization Approach to Generalized Moment Problems , 2003 .

[63]  B. Musicus,et al.  Maximum entropy pole-zero estimation , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[64]  Tryphon T. Georgiou Relative entropy and the multivariable multidimensional moment problem , 2006, IEEE Transactions on Information Theory.

[65]  Hugo J. Woerdeman,et al.  Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables , 2004 .

[66]  Mattia Zorzi,et al.  Rational approximations of spectral densities based on the Alpha divergence , 2013, Math. Control. Signals Syst..

[67]  Anders Lindquist,et al.  Spectral estimation of periodic and skew periodic random signals and approximation of spectral densities , 2014, Proceedings of the 33rd Chinese Control Conference.

[68]  Johan Karlsson,et al.  The Inverse Problem of Analytic Interpolation With Degree Constraint and Weight Selection for Control Synthesis , 2010, IEEE Transactions on Automatic Control.

[69]  P. Enqvist,et al.  A Convex Optimization Approach to ARMA(n, m) Model Design from Covariance and Cepstral Data , 2004, SIAM J. Control. Optim..

[70]  Michele Pavon,et al.  On the Geometry of Maximum Entropy Problems , 2011, SIAM Rev..

[71]  S. Lang,et al.  Duality for multidimensional MEM spectral analysis , 1983 .