A new concrete-glulam prefabricated composite wall system: Thermal behavior, life cycle assessment and structural response

[1]  F. E. Richart,et al.  Tests of Composite Timber-Concrete Beams , 1943 .

[2]  Gerhard Schickhofer,et al.  THE MUR RIVER WOODEN BRIDGE, AUSTRIA , 1993 .

[3]  Greg Foliente,et al.  Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .

[4]  Raymond J. Cole,et al.  Energy and greenhouse gas emissions associated with the construction of alternative structural systems , 1998 .

[5]  Mikael Möller,et al.  Innovative prefabricated composite bridges , 2002 .

[6]  Targo Kalamees,et al.  Hygrothermal calculations and laboratory tests on timber-framed wall structures , 2003 .

[7]  B. V. Venkatarama Reddy,et al.  Embodied energy of common and alternative building materials and technologies , 2003 .

[8]  Andre Filiatrault,et al.  Hysteretic damping of wood framed buildings , 2003 .

[9]  Gerald Rebitzer,et al.  IMPACT 2002+: A new life cycle impact assessment methodology , 2003 .

[10]  Habib J. Dagher,et al.  Testing and Analysis of Partially Composite Fiber-Reinforced Polymer-Glulam-Concrete Bridge Girders , 2004 .

[11]  Nilson Tadeu Mascia,et al.  Benefits of timber-concrete composite action in rural bridges , 2004 .

[12]  Mjn Priestley,et al.  Direct displacement-based seismic design , 2005 .

[13]  Fernando Fonseca,et al.  Analytical Model for Sheathing-to-Framing Connections in Wood Shear Walls and Diaphragms , 2005 .

[14]  Gloria P. Gerilla,et al.  An environmental assessment of wood and steel reinforced concrete housing construction , 2007 .

[15]  Maurizio Piazza,et al.  Restoration and Strengthening of Timber Structures: Principles, Criteria, and Examples , 2007 .

[16]  M. Brunner,et al.  Timber-concrete-composite with an adhesive connector (wet on wet process) , 2007 .

[17]  Julius Natterer,et al.  Laboratory tests of composite wood-concrete beams , 2008 .

[18]  Gilles Foret,et al.  New wood composite bridges , 2009 .

[19]  Elzbieta Lukaszewska,et al.  Development of prefabricated timber-concrete composite floors , 2009 .

[20]  David V. Rosowsky,et al.  Direct Displacement Procedure for Performance-Based Seismic Design of Mid-Rise Wood-Framed Structures , 2009 .

[21]  C S Poon,et al.  Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. , 2009, Waste management.

[22]  Peter Collin,et al.  Steel Concrete Composite Structures: Introduction , 2009 .

[23]  Dominique Derome,et al.  Using life cycle assessment to derive an environmental index for light-frame wood wall assemblies , 2010 .

[24]  Samuel V. Glass,et al.  Moisture relations and physical properties of wood , 2010 .

[25]  François Toutlemonde,et al.  Experimental Validation of a 10-m-Span Composite UHPFRC–Carbon Fibers–Timber Bridge Concept , 2011 .

[26]  John S. Monahan,et al.  An embodied carbon and energy analysis of modern methods of construction in housing: A case study us , 2011 .

[27]  David Yeoh,et al.  State of the Art on Timber-Concrete Composite Structures: Literature Review , 2011 .

[28]  James O'Neill,et al.  Design of Timber-Concrete Composite Floors for Fire Resistance , 2011 .

[29]  Frank Lam,et al.  A Comparative Cradle-to-Gate Life Cycle Assessment of Mid-Rise Office Building Construction Alternatives: Laminated Timber or Reinforced Concrete , 2012 .

[30]  Ambrose Dodoo,et al.  Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building , 2012 .

[31]  Bruno Peuportier,et al.  Energy and environmental assessment of two high energy performance residential buildings , 2012 .

[32]  Robert H. Crawford,et al.  Life cycle greenhouse gas emissions and energy analysis of prefabricated reusable building modules , 2012 .

[33]  Paulo Providência,et al.  Timber-Concrete Composite Bridges: State-of-the-Art Review , 2013 .

[34]  Maurizio Piazza,et al.  Seismic design of timber buildings with a direct displacement-based design method , 2013 .

[35]  Maria Wall,et al.  Energy and Environmental Performance of Multi-Story Apartment Buildings Built in Timber Construction Using Passive House Principles , 2013 .

[36]  Hua Zhong,et al.  Development of a Carbon Emission Calculations System for Optimizing Building Plan Based on the LCA Framework , 2014 .

[37]  Giosuè Boscato,et al.  Structural Behaviour and Comparison of CGF Panels , 2014 .

[38]  Agustin Perez-Garcia,et al.  Building's eco-efficiency improvements based on reinforced concrete multilayer structural panels , 2014 .

[39]  Lenka Lausova,et al.  Experimental Measurements and Numerical Simulations of Dynamic Thermal Performance of External Timber Frame Wall , 2014 .

[40]  Buick Davison,et al.  An environmental impact comparison of external wall insulation types , 2015 .

[41]  Roberto Tomasi,et al.  Innovative Timber-Concrete Composite Structures with Prefabricated FRC Slabs , 2015 .

[42]  Manuele Margni,et al.  IMPACT 2002+: User Guide , 2015 .

[43]  Krushna Mahapatra,et al.  Energy Performance of Two Multi-Story Wood-Frame Passive Houses in Sweden , 2015 .

[44]  Pedro de Almeida,et al.  Acoustic performance of timber and timber-concrete floors , 2015 .

[45]  Alfredo M. P. G. Dias,et al.  Environmentally friendly high performance timber-concrete panel. , 2016 .

[46]  Timothy Oluseun Adekunle,et al.  Thermal comfort summertime temperatures and overheating in prefabricated timber housing , 2016 .

[47]  Tiziano Dalla Mora,et al.  Environmental Performances of a Timber-concrete Prefabricated Composite Wall System , 2017 .