Application of Knowledge Based Systems for Supervision and Control of Machining Processes

One of the ways of attaining higher productivity and profitability in machining processes is to enhance process supervision and control systems. Because of the nonlinear behavior and complexity of machining processes, researchers have used knowledge-based techniques to improve the performance of such systems. Their main reason for using this approach is that a suitable process model is indispensable for both automatic supervision and control, yet traditional approaches frequently fail to yield appropriate models of complex (nonlinear, time-varying, ill-defined) processes, such as machining certainly is, while knowledge-based methods provide novel tools for dealing with process complexity. One of the most powerful of these tools is fuzzy logic, which was the authors' chosen design approach. An overview is given of the main aspects of fuzzy logic and its application to modeling and control by means of the so-called Fuzzy Logic Device (FLD). Available methods suitable for process supervision are also reviewed, including pattern recognition and so-called intelligent supervision. Emphasis is placed on modeling by means of fuzzy clustering techniques. The machining process is typified with a systemic (input/output) approach, as is necessary for modeling and control purposes. Finally the authors' experience with successful applications of fuzzy logic to the modeling (fuzzy clustering) and control (fuzzy hierarchical control) of the machining process, implemented in a machining center, is presented. These thoroughly assessed real-world implementations corroborate the potential of knowledge-based techniques.

[1]  Bart Kosko,et al.  Fuzzy Systems as Universal Approximators , 1994, IEEE Trans. Computers.

[2]  Yang Shuzi,et al.  Tool Wear Length Estimation with a Self-Learning Fuzzy Inference Algorithm in Finish Milling , 1999 .

[3]  Bernard Widrow,et al.  Adaptive neural networks and their applications , 1993, Int. J. Intell. Syst..

[4]  Yasuhiko Dote,et al.  Neuro fuzzy transmission control for automobile with variable loads , 1995, IEEE Trans. Control. Syst. Technol..

[5]  Krzysztof Jemielniak,et al.  Commercial Tool Condition Monitoring Systems , 1999 .

[6]  Toshikazu Tobi,et al.  A practical application of fuzzy control for an air-conditioning system , 1991, Int. J. Approx. Reason..

[7]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Pedro U. Lima,et al.  Intelligent controllers as hierarchical stochastic automata , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Robert I. King,et al.  Handbook of High-Speed Machining Technology , 1986 .

[10]  P.J. King,et al.  The application of fuzzy control systems to industrial processes , 1977, Autom..

[11]  M. Narasimha Murty,et al.  Clustering with evolution strategies , 1994, Pattern Recognit..

[12]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[13]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition , 1992 .

[14]  Kumpati S. Narendra,et al.  Adaptation and learning using multiple models, switching, and tuning , 1995 .

[15]  Yusuf Altintas,et al.  Prediction of Cutting Forces and Tool Breakage in Milling from Feed Drive Current Measurements , 1992 .

[16]  Clodeinir Ronei Peres,et al.  Fuzzy model and hierarchical fuzzy control integration: an approach for milling process optimization , 1999 .

[17]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[18]  D. Dubois,et al.  An application of fuzzy arithmetic to the optimization of industrial machining processes , 1987 .

[19]  Ramón Galán,et al.  Fuzzy controllers: lifting the linear-nonlinear frontier , 1992 .

[20]  Björn Sohlberg,et al.  Supervision and control for industrial processes , 1998 .

[21]  Dimitar Filev Fuzzy modeling of complex systems , 1991, Int. J. Approx. Reason..

[22]  Fuzzy Logic in Control Systems : Fuzzy Logic , 2022 .

[23]  Hao Ying,et al.  Essentials of fuzzy modeling and control , 1995 .

[24]  Rolf Isermann,et al.  Process fault detection based on modeling and estimation methods - A survey , 1984, Autom..

[25]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[26]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[27]  H.-J. Zimmermann,et al.  Fuzzy set theory—and its applications (3rd ed.) , 1996 .

[28]  Piero P. Bonissone,et al.  Industrial applications of fuzzy logic at General Electric , 1995, Proc. IEEE.

[29]  Shigeo Abe,et al.  Neural Networks and Fuzzy Systems , 1996, Springer US.

[30]  F. Lewis,et al.  Towards a paradigm for fuzzy logic control , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[31]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[32]  A. Galip Ulsoy,et al.  Model Reference Adaptive Force Control in Milling , 1989 .

[33]  S. Shao Fuzzy self-organizing controller and its application for dynamic processes , 1988 .

[34]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[35]  Michio Sugeno,et al.  Industrial Applications of Fuzzy Technology in the World , 1995 .

[36]  Thorsten von Eicken,et al.  技術解説 IEEE Computer , 1999 .

[37]  Jyh-Shing Roger Jang,et al.  A hierarchical approach to designing approximate reasoning-based controllers for dynamic physical systems , 1990, UAI.

[38]  Clarence W. de Silva,et al.  Considerations of hierarchical fuzzy control , 1995 .

[39]  Roger Smith,et al.  Fuzzy Petri nets with neural networks to model products quality from a CNC-milling machining centre , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[40]  Tae-Yong Kim,et al.  Adaptive cutting force control for a machining center by using indirect cutting force measurements , 1996 .

[41]  Farrokh Sassani,et al.  DESIGN AND ANALYSIS OF ADAPTIVE CONTROLLERS FOR MILLING PROCESS , 1990 .

[42]  RODOLFO E. HABER,et al.  Model of the milling process on the basis of cutting force : A Neural Network-based Approach * , 2000 .

[43]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[44]  Anna Maria Zanaboni,et al.  Synthesis of fuzzy controllers through neural networks , 1995 .

[45]  Giorgio Rizzoni,et al.  Fault detection and isolation for an experimental internal combustion engine via fuzzy identification , 1995, IEEE Trans. Control. Syst. Technol..

[46]  Lih-Chang Lin,et al.  Hierarchical Fuzzy Control for C-Axis of CNC Turning Centers Using Genetic Algorithms , 1999, J. Intell. Robotic Syst..

[47]  James C. Bezdek,et al.  A Review of Probabilistic, Fuzzy, and Neural Models for Pattern Recognition , 1996, J. Intell. Fuzzy Syst..

[48]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning - II , 1975, Inf. Sci..

[49]  Chrysostomos D. Stylios,et al.  Modelling supervisory control systems using fuzzy cognitive maps , 2000 .

[50]  Paul P. Wang,et al.  Fuzzy dynamic system and fuzzy linguistic controller classification , 1994, Autom..

[51]  M. Mizumoto NOTE ON THE ARITHMETIC RULE BY ZADEH FOR FUZZY CONDITIONAL INFERENCE , 1981 .

[52]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[53]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[54]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[55]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[56]  S.-H. Lin,et al.  Synergistic modeling and applications of hierarchical fuzzy neural networks , 1999 .

[57]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[58]  Fernando Reyes-Cortés,et al.  Lyapunov Stable Control of Robot Manipulators: A Fuzzy Self-Tuning Procedure , 1999, Intell. Autom. Soft Comput..

[59]  Yoram Koren,et al.  Control of Machine Tools , 1997 .

[60]  Raghu Raghavan,et al.  Hierarchical Fuzzy Logic Water-Level Control in Advanced Boiling Water Reactors , 1997 .

[61]  Oscar H. IBARm Information and Control , 1957, Nature.

[62]  S. Ros,et al.  Fuzzy model of cutting process on a milling machine , 1994 .

[63]  Angel Alique,et al.  Toward intelligent machining: hierarchical fuzzy control for the end milling process , 1998, IEEE Trans. Control. Syst. Technol..

[64]  James M. Keller,et al.  A fuzzy K-nearest neighbor algorithm , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[65]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[67]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[68]  Jürgen Schürmann,et al.  Pattern classification , 2008 .

[69]  Rodolfo E. Haber,et al.  Fuzzy Supervisory Control of End Milling Process , 1996, Inf. Sci..

[70]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[71]  Ebrahim H. Mamdani,et al.  A linguistic self-organizing process controller , 1979, Autom..

[72]  Spyros G. Tzafestas,et al.  Modern approaches to system/sensor fault detection and diagnosis , 1990 .

[73]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[74]  Kevin M. Passino,et al.  Expert supervision of fuzzy learning systems for fault tolerant aircraft control , 1995 .

[75]  Rodolfo E. Haber,et al.  Hierarchical fuzzy control of the milling process with a self-tuning algorithm , 2000, Proceedings of the 2000 IEEE International Symposium on Intelligent Control. Held jointly with the 8th IEEE Mediterranean Conference on Control and Automation (Cat. No.00CH37147).

[76]  S. W. Kim,et al.  A new adaptive fuzzy controller using the parallel structure of fuzzy controller and its application , 1996, Fuzzy Sets Syst..

[77]  E. H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Man Mach. Stud..

[78]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[79]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[80]  Y.F. Li,et al.  Development of fuzzy algorithms for servo systems , 1989, IEEE Control Systems Magazine.

[81]  Ichiro Inasaki,et al.  Tool Condition Monitoring (TCM) — The Status of Research and Industrial Application , 1995 .

[82]  Kee-Choon Kwon,et al.  A fuzzy controller with a real-time tuning algorithm and its application to a steam generator water level control , 1998 .

[83]  M. Szafarczyk Monitoring and automatic supervision in manufacturing. , 2001 .

[84]  D. Guinea,et al.  Multisensor information integration , 1990 .

[85]  Y. C. Shin,et al.  Control of Cutting Force for End Milling Processes Using an Extended Model Reference Adaptive Control Scheme , 1996 .

[86]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[87]  H. R. van Nauta Lemke,et al.  Application of a fuzzy controller in a warm water plant , 1976, Autom..

[88]  Ronald R. Yager,et al.  On a hierarchical structure for fuzzy modeling and control , 1993, IEEE Trans. Syst. Man Cybern..

[89]  Osita D. I. Nwokah,et al.  A Digital Robust Controller for Cutting Force Control in the End Milling Process , 1997 .

[90]  D. Linkens,et al.  A hierarchical multivariable fuzzy controller for learning with genetic algorithms , 1996 .

[91]  Kevin M. Passino,et al.  Distributed fuzzy control of flexible manufacturing systems , 1994, IEEE Trans. Control. Syst. Technol..

[92]  James S. Albus,et al.  Outline for a theory of intelligence , 1991, IEEE Trans. Syst. Man Cybern..

[93]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[94]  Jun Zhou,et al.  Adaptive hierarchical fuzzy controller , 1993, IEEE Trans. Syst. Man Cybern..

[95]  Witold Pedrycz Identification in fuzzy systems , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[96]  Didier Dubois Fuzzy sets and systems , 1980 .

[97]  Ruxu Du,et al.  Tool condition monitoring in turning using fuzzy set theory , 1992 .

[98]  David J. Braverman,et al.  Learning Filters for Optimum Pattern Recognition , 1962, IRE Trans. Inf. Theory.

[99]  Rodolfo E. Haber,et al.  A neural network-based model for the prediction of cutting force in milling process. A progress study on a real case , 2000, Proceedings of the 2000 IEEE International Symposium on Intelligent Control. Held jointly with the 8th IEEE Mediterranean Conference on Control and Automation (Cat. No.00CH37147).

[100]  Jujang Lee,et al.  Adaptive network-based fuzzy inference system with pruning , 2003, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).