Recursive Computation of Logarithmic Derivatives, Ratios, and Products of Spheroidal Harmonics and Modified Bessel Functions and Applications

Spheroidal harmonics and modified Bessel functions have wide applications in scientific and engineering computing. Recursive methods are developed to compute the logarithmic derivatives, ratios, and products of the prolate spheroidal harmonics ($$P_n^m(x)$$Pnm(x), $$Q_n^m(x)$$Qnm(x), $$n\ge m\ge 0$$n≥m≥0, $$x>1$$x>1), the oblate spheroidal harmonics ($$P_n^m(ix)$$Pnm(ix), $$Q_n^m(ix)$$Qnm(ix), $$n\ge m\ge 0$$n≥m≥0, $$x>0$$x>0), and the modified Bessel functions ($$I_n(x)$$In(x), $$K_n(x)$$Kn(x), $$n\ge 0$$n≥0, $$x>0$$x>0) in order to avoid direct evaluation of these functions that may easily cause overflow/underflow for high degree/order and for extreme argument. Stability analysis shows the proposed recursive methods are stable for realistic degree/order and argument values. Physical examples in electrostatics are given to validate the recursive methods.

[1]  Amparo Gil,et al.  A code to evaluate prolate and oblate spheroidal harmonics , 1998 .

[2]  Mats Hamrud,et al.  A Fast Spherical Harmonics Transform for Global NWP and Climate Models , 2013 .

[3]  Amparo Gil,et al.  EVALUATION OF ASSOCIATED LEGENDRE FUNCTIONS OFF THE CUT AND PARABOLIC CYLINDER FUNCTIONS , 1999 .

[4]  W. Gautschi Computational Aspects of Three-Term Recurrence Relations , 1967 .

[5]  S. L. Belousov,et al.  Tables of normalized associated Legendre polynomials , 1965 .

[6]  Will Featherstone,et al.  A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions , 2002 .

[7]  T. Fukushima Recursive computation of oblate spheroidal harmonics of the second kind and their first-, second-, and third-order derivatives , 2013, Journal of Geodesy.

[8]  Shaozhong Deng,et al.  Coulomb Green's function and image potential near a cylindrical diffuse interface , 2015, Comput. Phys. Commun..

[9]  Jian-Ming Jin,et al.  Computation of special functions , 1996 .

[10]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[11]  Prolate Spheroidal Harmonic Expansion of Gravitational Field , 2014 .

[12]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[13]  Zhensen Wu,et al.  Electromagnetic scattering for multilayered sphere: Recursive algorithms , 1991 .

[14]  D. E. Amos,et al.  Computation of modified Bessel functions and their ratios , 1974 .

[15]  Shaozhong Deng Electrostatic potential of point charges inside dielectric oblate spheroids. , 2008, Journal of electrostatics.

[16]  J. Segura On bounds for solutions of monotonic first order difference-differential systems , 2011, 1110.0870.

[17]  Robert E. Gaunt Inequalities for modified Bessel functions and their integrals , 2012, 1211.7325.

[18]  Scott Grandison,et al.  Monotonicity of some modified Bessel function products , 2007 .

[19]  Pierpaolo Natalini,et al.  Some Inequalities for Modified Bessel Functions , 2010 .

[20]  Árpád Baricz,et al.  On a product of modified Bessel functions , 2008 .

[21]  Andrea Laforgia Bounds for modified Bessel functions , 1991 .

[22]  Matti Vuorinen,et al.  Functional inequalities for modified Bessel functions , 2010, 1009.4814.

[23]  W. Yang,et al.  Improved recursive algorithm for light scattering by a multilayered sphere. , 2003, Applied optics.

[24]  Ovidio Peña-Rodríguez,et al.  Scattering of electromagnetic radiation by a multilayered sphere , 2009, Comput. Phys. Commun..

[25]  A. R. Barnett,et al.  Coulomb and Bessel functions of complex arguments and order , 1986 .

[26]  ABSOLUTE PROPERTIES OF THE TRIPLE STAR HP AURIGAE , 2013, 1310.3856.

[27]  Shaozhong Deng,et al.  Three-dielectric-layer hybrid solvation model with spheroidal cavities in biomolecular simulations. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Barry I. Schneider,et al.  A new Fortran 90 program to compute regular and irregular associated Legendre functions , 2010, Comput. Phys. Commun..