The Convex Geometry of Linear Inverse Problems
暂无分享,去创建一个
Pablo A. Parrilo | Venkat Chandrasekaran | Alan S. Willsky | Benjamin Recht | A. Willsky | P. Parrilo | B. Recht | V. Chandrasekaran
[1] R. Dudley. The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .
[2] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[3] J. Kuelbs. Probability on Banach spaces , 1978 .
[4] G. Pisier. Remarques sur un résultat non publié de B. Maurey , 1981 .
[5] M. Fukushima,et al. A generalized proximal point algorithm for certain non-convex minimization problems , 1981 .
[6] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[7] G. Pisier. Probabilistic methods in the geometry of Banach spaces , 1986 .
[8] Y. Gordon. On Milman's inequality and random subspaces which escape through a mesh in ℝ n , 1988 .
[9] Martin E. Dyer,et al. A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.
[10] F. Bonsall. A GENERAL ATOMIC DECOMPOSITION THEOREM AND BANACH'S CLOSED RANGE THEOREM , 1991 .
[11] L. Jones. A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training , 1992 .
[12] Marie-Françoise Roy,et al. Real algebraic geometry , 1992 .
[13] Andrew R. Barron,et al. Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.
[14] G. Ziegler. Lectures on Polytopes , 1994 .
[15] Joe W. Harris,et al. Algebraic Geometry: A First Course , 1995 .
[16] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[17] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[18] Ronald A. DeVore,et al. Some remarks on greedy algorithms , 1996, Adv. Comput. Math..
[19] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[20] Elijah Polak,et al. Optimization: Algorithms and Consistent Approximations , 1997 .
[21] Y. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic optimization , 1997 .
[22] Miklós Simonovits,et al. Approximation of diameters: randomization doesn't help , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[23] P. McMullen. INTRODUCTION TO GEOMETRIC PROBABILITY , 1999 .
[24] M. Ledoux. The concentration of measure phenomenon , 2001 .
[25] Tamara G. Kolda,et al. Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[26] Kim-Chuan Toh,et al. SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .
[27] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[28] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[29] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[30] Robert D. Nowak,et al. An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..
[31] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[32] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[33] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[34] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[35] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[36] Noga Alon,et al. Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.
[37] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[38] Adi Shraibman,et al. Rank, Trace-Norm and Max-Norm , 2005, COLT.
[39] C. F. Beckmann,et al. Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.
[40] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[41] D. Donoho,et al. Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[42] D. Donoho,et al. Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.
[43] D. Donoho. For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .
[44] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[45] A. Banerjee. Convex Analysis and Optimization , 2006 .
[46] M. Rudelson,et al. Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.
[47] David L. Donoho,et al. High-Dimensional Centrally Symmetric Polytopes with Neighborliness Proportional to Dimension , 2006, Discret. Comput. Geom..
[48] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[49] Wotao Yin,et al. Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .
[50] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[51] Xuelong Li,et al. Tensors in Image Processing and Computer Vision , 2009, Advances in Pattern Recognition.
[52] S. Geer,et al. On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.
[53] Mihailo Stojnic,et al. Various thresholds for ℓ1-optimization in compressed sensing , 2009, ArXiv.
[54] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..
[55] Holger Rauhut,et al. Circulant and Toeplitz matrices in compressed sensing , 2009, ArXiv.
[56] M. Stojnic. Various thresholds for $\ell_1$-optimization in compressed sensing , 2009 .
[57] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[58] Stephen J. Wright,et al. Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.
[59] S. Yun,et al. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .
[60] S. Yun,et al. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .
[61] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[62] Jian-Feng Cai,et al. Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..
[63] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[64] Emmanuel J. Candès,et al. A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..
[65] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[66] Weiyu Xu,et al. Compressive Sensing over the Grassmann Manifold: a Unified Geometric Framework , 2010, ArXiv.
[67] Victor Vianu,et al. Invited articles section foreword , 2010, JACM.
[68] Rekha R. Thomas,et al. Theta Bodies for Polynomial Ideals , 2008, SIAM J. Optim..
[69] David L. Donoho,et al. Counting the Faces of Randomly-Projected Hypercubes and Orthants, with Applications , 2008, Discret. Comput. Geom..
[70] Robert D. Nowak,et al. Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation , 2010, IEEE Transactions on Information Theory.
[71] Emmanuel J. Candès,et al. Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.
[72] Weiyu Xu,et al. Precise Stability Phase Transitions for $\ell_1$ Minimization: A Unified Geometric Framework , 2011, IEEE Transactions on Information Theory.
[73] Devavrat Shah,et al. Inferring Rankings Using Constrained Sensing , 2009, IEEE Transactions on Information Theory.
[74] Emmanuel J. Candès,et al. Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.
[75] Shiqian Ma,et al. Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..
[76] Weiyu Xu,et al. Null space conditions and thresholds for rank minimization , 2011, Math. Program..
[77] Yi Ma,et al. Robust principal component analysis? , 2009, JACM.
[78] Pablo A. Parrilo,et al. Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..
[79] Benjamin Recht,et al. Probability of unique integer solution to a system of linear equations , 2011, Eur. J. Oper. Res..
[80] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[81] Yurii Nesterov,et al. Gradient methods for minimizing composite functions , 2012, Mathematical Programming.