Approaching pooling design with smaller efficient ratio

In this paper, we employ affine symplectic space $${ASG(2\nu,\mathbb{F}_q)}$$ as a tool to construct two new classes of de-disjunct matrices. The efficiency ratio of new de-disjunct matrices is smaller than that of D’yachkov et al. (J Comput Biol 12:1129–1136, 2005).

[1]  Tayuan Huang,et al.  Pooling spaces and non-adaptive pooling designs , 2004, Discret. Math..

[2]  Morgan A. Bishop,et al.  Pcr Nonadaptive Group Testing of DNA Libraries for Biomolecular Computing and Taggant Applications , 2009, Discret. Math. Algorithms Appl..

[3]  Weili Wu,et al.  Error-Tolerant Trivial Two-Stage Group Testing for complexes Using Almost Separable and Almost Disjunct Matrices , 2009, Discret. Math. Algorithms Appl..

[4]  Anthony J. Macula,et al.  A simple construction of d-disjunct matrices with certain constant weights , 1996, Discret. Math..

[5]  Ding-Zhu Du,et al.  New constructions of non-adaptive and error-tolerance pooling designs , 2002, Discret. Math..

[6]  D. Du,et al.  Combinatorial Group Testing and Its Applications , 1993 .

[7]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[8]  Arkadii G. D'yachkov,et al.  Nonadaptive and Trivial Two-Stage Group Testing with Error-Correcting d e-Disjunct Inclusion Matrices , 2007 .

[9]  D. Du,et al.  Pooling Designs And Nonadaptive Group Testing: Important Tools For Dna Sequencing , 2006 .

[10]  Ding-Zhu Du,et al.  A survey on combinatorial group testing algorithms with applications to DNA Library Screening , 1999, Discrete Mathematical Problems with Medical Applications.

[11]  Frank K. Hwang,et al.  A Construction of Pooling Designs with Some Happy Surprises , 2005, J. Comput. Biol..

[12]  Weili Wu,et al.  DNA Screening, Pooling Design and Simplicial Complex , 2003, J. Comb. Optim..

[13]  Weili Wu,et al.  Decoding in Pooling Designs , 2003, J. Comb. Optim..