Reinforcement Learning for Adaptive Mesh Refinement

Large-scale finite element simulations of complex physical systems governed by partial differential equations crucially depend on adaptive mesh refinement (AMR) to allocate computational budget to regions where higher resolution is required. Existing scalable AMR methods make heuristic refinement decisions based on instantaneous error estimation and thus do not aim for long-term optimality over an entire simulation. We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning (RL) to train refinement policies directly from simulation. AMR poses a new problem for RL in that both the state dimension and available action set changes at every step, which we solve by proposing new policy architectures with differing generality and inductive bias. The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations. We demonstrate in comprehensive experiments on static function estimation and the advection of different fields that RL policies can be competitive with a widely-used error estimator and generalize to larger, more complex, and unseen test problems.

[1]  Wojciech M. Czarnecki,et al.  Grandmaster level in StarCraft II using multi-agent reinforcement learning , 2019, Nature.

[2]  Stefano Ermon,et al.  Learning Neural PDE Solvers with Convergence Guarantees , 2019, ICLR.

[3]  Jakub W. Pachocki,et al.  Dota 2 with Large Scale Deep Reinforcement Learning , 2019, ArXiv.

[4]  J. Zico Kolter,et al.  Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction , 2020, ICML.

[5]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[6]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[7]  Stefano Zampini,et al.  MFEM: a modular finite element methods library , 2019, 1911.09220.

[8]  F. e. Calcul des Probabilités , 1889, Nature.

[9]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[10]  J. Z. Zhu,et al.  Effective and practical h–p‐version adaptive analysis procedures for the finite element method , 1989 .

[11]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[12]  Jure Leskovec,et al.  Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation , 2018, NeurIPS.

[13]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[14]  Meire Fortunato,et al.  Learning Mesh-Based Simulation with Graph Networks , 2020, ArXiv.

[15]  Michael Feischl,et al.  Recurrent Neural Networks as Optimal Mesh Refinement Strategies , 2019, Comput. Math. Appl..

[16]  Shimon Whiteson,et al.  Growing Action Spaces , 2019, ICML.

[17]  Hongyuan Zha,et al.  GraphOpt: Learning Optimization Models of Graph Formation , 2020, ICML.

[18]  Tzanio V. Kolev,et al.  Nonconforming Mesh Refinement for High-Order Finite Elements , 2019, SIAM J. Sci. Comput..

[19]  Carsten Burstedde Adaptive mesh refinement and adjoint methods in geophysics simulations , 2013 .

[20]  K. Fujimoto Multi-Scale Kinetic Simulation of Magnetic Reconnection With Dynamically Adaptive Meshes , 2018, Front. Phys..

[21]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[22]  Razvan Pascanu,et al.  Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.

[23]  Peter K. Jimack,et al.  MeshingNet: A New Mesh Generation Method Based on Deep Learning , 2020, ICCS.

[24]  S. McFee,et al.  Determining an approximate finite element mesh density using neural network techniques , 1992 .

[25]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[26]  Yishay Mansour,et al.  Policy Gradient Methods for Reinforcement Learning with Function Approximation , 1999, NIPS.

[27]  Alessandro Sperduti,et al.  Supervised neural networks for the classification of structures , 1997, IEEE Trans. Neural Networks.

[28]  S. Gupta,et al.  Statistical decision theory and related topics IV , 1988 .

[29]  Ignacio Muga,et al.  Data-Driven Finite Elements Methods: Machine Learning Acceleration of Goal-Oriented Computations , 2020, ArXiv.

[30]  Klaus Ritter,et al.  Bayesian numerical analysis , 2000 .

[31]  Krzysztof J. Fidkowski,et al.  Output-Based Error Estimation and Mesh Adaptation Using Convolutional Neural Networks: Application to a Scalar Advection-Diffusion Problem , 2020 .

[32]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[33]  J. Reddy,et al.  The Finite Element Method in Heat Transfer and Fluid Dynamics , 1994 .

[34]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[35]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[36]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[37]  Quoc V. Le,et al.  HyperNetworks , 2016, ICLR.

[38]  R. Chedid,et al.  Automatic finite-element mesh generation using artificial neural networks-Part I: Prediction of mesh density , 1996 .

[39]  Tor Lattimore,et al.  Behaviour Suite for Reinforcement Learning , 2019, ICLR.

[40]  F. Scarselli,et al.  A new model for learning in graph domains , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[41]  Tzanio V. Kolev,et al.  The Target-Matrix Optimization Paradigm for High-Order Meshes , 2018, SIAM J. Sci. Comput..

[42]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[43]  Leslie Pack Kaelbling,et al.  Graph Element Networks: adaptive, structured computation and memory , 2019, ICML.

[44]  Razvan Pascanu,et al.  Interaction Networks for Learning about Objects, Relations and Physics , 2016, NIPS.

[45]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[46]  Stephan Hoyer,et al.  Learning data-driven discretizations for partial differential equations , 2018, Proceedings of the National Academy of Sciences.

[47]  Yee Whye Teh,et al.  Distral: Robust multitask reinforcement learning , 2017, NIPS.

[48]  R. Basri,et al.  Learning Algebraic Multigrid Using Graph Neural Networks , 2020, ICML.

[49]  Changbom Park,et al.  Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement , 2018, 1803.08061.