Hybrid metal/semiconductor lasers based on confined Tamm plasmons

Tamm plasmons are interface modes formed at the boundary between a metallic layer and a dielectric Bragg mirror. They present advantages associated both to surface plasmons and to microcavities photonic modes. One of their striking properties is that they can be spatially confined by structuring only the metallic part of the structure, thus reducing the size of the mode and allowing various geometries without altering the optical properties of the active layer. These modes are very good candidates for optimizing the emission properties of semiconductor nanostructures. In particular, due to the relatively low damping and the versatility of the Tamm geometries, they open new perspective for the development of hybrid metal/semiconductor lasers. In this paper, we will show that a laser effect can be achieved in a bidimensional Tamm structure under pulsed optical pumping. We will also demonstrate that the mode can be spatially confined, and that this results in a reduction of the pump power at threshold.

[1]  M. Brongersma,et al.  An electrically-driven GaAs nanowire surface plasmon source. , 2012, Nano letters.

[2]  A. Lemaître,et al.  Single photon source using confined Tamm plasmon modes , 2012 .

[3]  J. M. Chamberlain,et al.  Tamm plasmon polaritons: Slow and spatially compact light , 2008 .

[4]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[5]  A. Lemaître,et al.  Confined Tamm plasmon lasers. , 2013, Nano letters.

[6]  Isabelle Sagnes,et al.  Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. , 2007, Physical review letters.

[7]  Yamamoto,et al.  Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[8]  An integrated surface-plasmon source. , 2010, Optics express.

[9]  P. Senellart,et al.  Controlling spontaneous emission with plasmonic optical patch antennas. , 2012, Nano letters (Print).

[10]  Dabing Li,et al.  Electric spaser in the extreme quantum limit. , 2012, Physical review letters.

[11]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[12]  A. Lemaître,et al.  Lasing in a hybrid GaAs/silver Tamm structure , 2012 .

[13]  J. M. Chamberlain,et al.  Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror , 2007 .

[14]  G. Duan,et al.  In situ generation of surface plasmon polaritons using a near-infrared laser diode. , 2012, Nano letters.

[15]  Rupert F. Oulton,et al.  Surface plasmon lasers: sources of nanoscopic light , 2012 .

[16]  T. O’Brien,et al.  Metal-cavity quantum-dot lasers with enhanced thermal performance. , 2012, Optics letters.

[17]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[18]  van Pj René Veldhoven,et al.  Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. , 2012, Optics express.

[19]  J. Plenet,et al.  Particularities of surface plasmon–exciton strong coupling with large Rabi splitting , 2008 .

[20]  A. Miard,et al.  Exciton/plasmon polaritons in GaAs/GaAlAs heterostructures near a metallic layer , 2008, 0809.4206.

[21]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[22]  Stanley,et al.  Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons. , 1995, Physical review. B, Condensed matter.

[23]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[24]  S. Chuang,et al.  Metal-cavity surface-emitting microlaser with hybrid metal-DBR reflectors. , 2011, Optics letters.

[25]  A. Lemaître,et al.  Emission of Tamm plasmon/exciton polaritons , 2009 .

[26]  A. Lemaître,et al.  Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. , 2011, Physical review letters.

[27]  C. Sirtori,et al.  Coupling of a surface plasmon with localized subwavelength microcavity modes , 2011, 1212.5014.