Scalable and continuous access to pure cyclic polymers enabled by ‘quarantined’ heterogeneous catalysts

[1]  B. Sumerlin,et al.  Semi-conducting cyclic copolymers of acetylene and propyne , 2021, Reactive and Functional Polymers.

[2]  R. Dahlstrom,et al.  Challenges and opportunities , 2021, Foundations of a Sustainable Economy.

[3]  Jingsong Yuan,et al.  Metathesis Cascade-Triggered Depolymerization of Enyne Self-Immolative Polymers. , 2021, Angewandte Chemie.

[4]  Gregory I. Peterson,et al.  The influence of polymer architecture in polymer mechanochemistry. , 2021, Chemical communications.

[5]  B. Sumerlin,et al.  Cyclic Polyacetylene , 2021, Synfacts.

[6]  Matthew R. Golder,et al.  A Cyclic Ruthenium Benzylidene Initiator Platform Enhances Reactivity for Ring-Expansion Metathesis Polymerization. , 2021, Journal of the American Chemical Society.

[7]  E. Chen,et al.  Synchronous Control of Chain Length/Sequence/Topology for Precision Synthesis of Cyclic Block Copolymers from Monomer Mixtures. , 2021, Journal of the American Chemical Society.

[8]  B. D. De Geest,et al.  Biomaterials applications of cyclic polymers. , 2020, Biomaterials.

[9]  Peter Kipruto Chemweno,et al.  Towards an innovative lubricant condition monitoring strategy for maintenance of ageing multi-unit systems , 2020, Reliab. Eng. Syst. Saf..

[10]  B. Trzaskowski,et al.  Decomposition of Ruthenium Olefin Metathesis Catalyst , 2020, Catalysts.

[11]  J. Añel,et al.  Environmental and Economic Constraints on the Use of Lubricant Oils for Wind and Hydropower Generation: The Case of NATURGY , 2020, Sustainability.

[12]  G. Coates,et al.  Chemical recycling to monomer for an ideal, circular polymer economy , 2020, Nature Reviews Materials.

[13]  Scott M. Grayson,et al.  The synthesis, properties and potential applications of cyclic polymers , 2020, Nature Chemistry.

[14]  Yangju Lin,et al.  Dynamic Memory Effects in the Mechanochemistry of Cyclic Polymers. , 2019, Journal of the American Chemical Society.

[15]  Justin G. Kennemur,et al.  Self-Immolative Bottlebrush Polypentenamers and their Macromolecular Metamorphosis. , 2019, Journal of the American Chemical Society.

[16]  B. Sumerlin,et al.  Polypropylene: Now Available without Chain Ends , 2019, Chem.

[17]  Justin G. Kennemur,et al.  Polypentenamer Renaissance: Challenges and Opportunities. , 2018, ACS macro letters.

[18]  R. Grubbs,et al.  The synthesis of cyclic polymers by olefin metathesis: Achievements and challenges , 2018, Journal of Polymer Science Part A: Polymer Chemistry.

[19]  William D. Mulhearn,et al.  Ring‐Opening Metathesis Copolymerization of Cyclopentene Above and Below Its Equilibrium Monomer Concentration , 2018 .

[20]  A. Martini,et al.  Review of Viscosity Modifier Lubricant Additives , 2018, Tribology Letters.

[21]  M. Turner,et al.  Macrocyclic poly(p-phenylenevinylene)s by ring expansion metathesis polymerisation and their characterisation by single-molecule spectroscopy , 2018, Chemical science.

[22]  R. Waymouth,et al.  Recent progress on the synthesis of cyclic polymers via ring‐expansion strategies , 2017 .

[23]  Justin G. Kennemur,et al.  Variable Temperature ROMP: Leveraging Low Ring Strain Thermodynamics To Achieve Well-Defined Polypentenamers , 2017 .

[24]  R. Register,et al.  Synthesis of Narrow-Distribution, High-Molecular-Weight ROMP Polycyclopentene via Suppression of Acyclic Metathesis Side Reactions. , 2017, ACS macro letters.

[25]  K. Abboud,et al.  Cyclic polymers from alkynes. , 2016, Nature chemistry.

[26]  P. Jacobs,et al.  Immobilized Grubbs catalysts on mesoporous silica materials: insight into support characteristics and their impact on catalytic activity and product selectivity , 2016 .

[27]  Róbert Tuba Synthesis of cyclopolyolefins via ruthenium catalyzed ring-expansion metathesis polymerization , 2014 .

[28]  K. Grela,et al.  Towards “cleaner” olefin metathesis: tailoring the NHC ligand of second generation ruthenium catalysts to afford auxiliary traits , 2014 .

[29]  P. Chirik,et al.  Bis(imino)pyridine Cobalt‐Catalyzed Alkene Isomerization—Hydroboration: A Strategy for Remote Hydrofunctionalization with Terminal Selectivity. , 2014 .

[30]  P. Chirik,et al.  Bis(imino)pyridine cobalt-catalyzed alkene isomerization-hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. , 2013, Journal of the American Chemical Society.

[31]  R. Grubbs,et al.  Ruthenium catalyzed equilibrium ring-opening metathesis polymerization of cyclopentene , 2013 .

[32]  Qian Wang,et al.  Lubrication Properties of Polyalphaolefin and Polysiloxane Lubricants: Molecular Structure–Tribology Relationships , 2012, Tribology letter.

[33]  M. Greaves Pressure viscosity coefficients and traction properties of synthetic lubricants for wind turbine gear systems , 2012 .

[34]  P. Rao,et al.  Poly‐α‐olefin‐based synthetic lubricants: a short review on various synthetic routes , 2012 .

[35]  R. Grubbs,et al.  Synthesis and direct imaging of ultrahigh molecular weight cyclic brush polymers. , 2011, Angewandte Chemie.

[36]  Kecheng Zhang,et al.  Universal cyclic polymer templates. , 2011, Journal of the American Chemical Society.

[37]  Shiping Zhu,et al.  Higher‐molecular‐weight hyperbranched polyethylenes containing crosslinking structures as lubricant viscosity‐index improvers , 2010 .

[38]  R. Grubbs,et al.  Well‐Defined Silica‐Supported Olefin Metathesis Catalysts. , 2009 .

[39]  R. Grubbs,et al.  A direct route to cyclic organic nanostructures via ring-expansion metathesis polymerization of a dendronized macromonomer. , 2009, Journal of the American Chemical Society.

[40]  R. Grubbs,et al.  Ring-expansion metathesis polymerization: catalyst-dependent polymerization profiles. , 2009, Journal of the American Chemical Society.

[41]  R. Grubbs,et al.  Well-defined silica-supported olefin metathesis catalysts. , 2009, Organic letters.

[42]  R. Grubbs,et al.  Cyclic ruthenium-alkylidene catalysts for ring-expansion metathesis polymerization. , 2008, Journal of the American Chemical Society.

[43]  R. Grubbs,et al.  Ring-Opening Metathesis Polymerization of Functionalized Low-Strain Monomers with Ruthenium-Based Catalysts , 2005 .

[44]  R. Register,et al.  Acyclic metathesis during ring-opening metathesis polymerization of cyclopentene , 2004 .

[45]  C. Macosko,et al.  Controlled Synthesis of High Molecular Weight Telechelic Polybutadienes by Ring-Opening Metathesis Polymerization , 2004 .

[46]  R. Grubbs,et al.  Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization: the importance of removing trace linear contaminants. , 2003, Journal of the American Chemical Society.

[47]  R. Grubbs,et al.  An "Endless" Route to Cyclic Polymers , 2002, Science.

[48]  Robert H. Grubbs,et al.  Ruthenium Carbene-Based Olefin Metathesis Initiators: Catalyst Decomposition and Longevity , 1999 .

[49]  J. E. Glass,et al.  Polymers as Rheology Modifiers , 1991 .

[50]  Justin G. Kennemur,et al.  Depolymerization of Bottlebrush Polypentenamers and Their Macromolecular Metamorphosis , 2019 .

[51]  M. Daneel,et al.  Achievements and Challenges , 2017 .