Honeybee Blue- and Ultraviolet-Sensitive Opsins: Cloning, Heterologous Expression in Drosophila, and Physiological Characterization

The honeybee (Apis mellifera) visual system contains three classes of retinal photoreceptor cells that are maximally sensitive to light at 440 nm (blue), 350 nm (ultraviolet), and 540 nm (green). We performed a PCR-based screen to identify the genes encoding the Apis blue- and ultraviolet (UV)-sensitive opsins. We obtained cDNAs that encode proteins having a high degree of sequence and structural similarity to other invertebrate and vertebrate visual pigments. The Apis blue opsin cDNA encodes a protein of 377 amino acids that is most closely related to other invertebrate visual pigments that are thought to be blue-sensitive. The UV opsin cDNA encodes a protein of 371 amino acids that is most closely related to the UV-sensitive Drosophila Rh3 and Rh4 opsins. To test whether these novel Apis opsin genes encode functional visual pigments and to determine their spectral properties, we expressed them in the R1–6 photoreceptor cells of blindninaE mutant Drosophila, which lack the major opsin of the fly compound eye. We found that the expression of either the Apis blue- or UV-sensitive opsin in transgenic flies rescued the visual defect of ninaEmutants, indicating that both genes encode functional visual pigments. Spectral sensitivity measurements of these flies demonstrated that the blue and UV visual pigments are maximally sensitive to light at 439 and 353 nm, respectively. These maxima are in excellent agreement with those determined previously by single-cell recordings fromApis photoreceptor cells and provide definitive evidence that the genes described here encode visual pigments having blue and UV sensitivity.

[1]  Biological Laboratories Divinity Avenue Cambridge Ma Usa. FlyBase FlyBase: a Drosophila database. , 1998, Nucleic acids research.

[2]  J. Nathans,et al.  Mechanisms of spectral tuning in the mouse green cone pigment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. Papatsenko,et al.  A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells. , 1997, Development.

[4]  U. Wolfrum,et al.  Molecular cloning of Drosophila Rh6 rhodopsin: the visual pigment of a subset of R8 photoreceptor cells 1 , 1997, FEBS letters.

[5]  W. Pak,et al.  Site‐directed mutagenesis of highly conserved amino acids in the first cytoplasmic loop of Drosophila Rh1 opsin blocks rhodopsin synthesis in the nascent state , 1997, The EMBO journal.

[6]  D. Kojima,et al.  Single amino acid residue as a functional determinant of rod and cone visual pigments. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  W. Gärtner,et al.  Primary Structure of Locust Opsins: a Speculative Model Which May Account for Ultraviolet Wavelength Light Detection , 1997, Vision Research.

[8]  D M Hunt,et al.  Characterisation of the ultraviolet-sensitive opsin gene in the honey bee, Apis mellifera. , 1997, European journal of biochemistry.

[9]  David R. Gilbert,et al.  FlyBase: a Drosophila database. The FlyBase consortium , 1997, Nucleic Acids Res..

[10]  L. Chadwell,et al.  Identification of a Novel Drosophila Opsin Reveals Specific Patterning of the R7 and R8 Photoreceptor Cells , 1996, Neuron.

[11]  N. Pierce,et al.  Cloning of the gene encoding honeybee long-wavelength rhodopsin: a new class of insect visual pigments. , 1996, Gene.

[12]  K. Palczewski,et al.  Structural and Enzymatic Aspects of Rhodopsin Phosphorylation (*) , 1996, The Journal of Biological Chemistry.

[13]  C. Zuker,et al.  The biology of vision of Drosophila. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Menzel,et al.  Learning and memory in honeybees: from behavior to neural substrates. , 1996, Annual review of neuroscience.

[15]  D. Hartl,et al.  Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. , 1995, Molecular phylogenetics and evolution.

[16]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[17]  R. Morse The Dance Language and Orientation of Bees , 1994 .

[18]  N. Troje,et al.  Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera , 1994, Vision Research.

[19]  J B Hurley,et al.  Transduction mechanisms of vertebrate and invertebrate photoreceptors. , 1994, The Journal of biological chemistry.

[20]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[21]  K. Kirschfeld,et al.  Spectral tuning of rhodopsin and metarhodopsin in vivo , 1993, Neuron.

[22]  Gebhard F. X. Schertler,et al.  Projection structure of rhodopsin , 1993, Nature.

[23]  J. Baldwin The probable arrangement of the helices in G protein‐coupled receptors. , 1993, The EMBO journal.

[24]  D. Oprian,et al.  Identification of the Cl(-)-binding site in the human red and green color vision pigments. , 1993, Biochemistry.

[25]  A. Riggs,et al.  Genomic Sequencing , 2010 .

[26]  J Nathans,et al.  Absorption spectra of the hybrid pigments responsible for anomalous color vision. , 1992, Science.

[27]  K Kirschfeld,et al.  Ectopic expression of ultraviolet-rhodopsins in the blue photoreceptor cells of Drosophila: visual physiology and photochemistry of transgenic animals , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  H. Khorana,et al.  Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. , 1992, The Journal of biological chemistry.

[29]  J. Nathans,et al.  Rhodopsin: structure, function, and genetics. , 1992, Biochemistry.

[30]  T. Sakmar,et al.  Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. , 1992, The Journal of biological chemistry.

[31]  J. O'Tousa Requirement of N-linked glycosylation site in Drosophila rhodopsin , 1992, Visual Neuroscience.

[32]  Jeremy Nathans,et al.  Absorption spectra of human cone pigments , 1992, Nature.

[33]  D. Lindsley,et al.  The Genome of Drosophila Melanogaster , 1992 .

[34]  W. Gärtner,et al.  QUANTUM YIELD OF CHAPSO‐SOLUBILIZED RHODOPSIN and 3‐HYDROXY RETINAL CONTAINING BOVINE OPSIN * , 1991, Photochemistry and photobiology.

[35]  M. Kozak Structural features in eukaryotic mRNAs that modulate the initiation of translation. , 1991, The Journal of biological chemistry.

[36]  C. Zuker,et al.  The cyclophilin homolog ninaA is required in the secretory pathway , 1991, Cell.

[37]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[38]  H. Khorana,et al.  The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. D. Bernard,et al.  Color vision in Lycaena butterflies: spectral tuning of receptor arrays in relation to behavioral ecology. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[40]  D. Stavenga,et al.  Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). , 1991, Tissue & cell.

[41]  J Nathans,et al.  Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. , 1990, Biochemistry.

[42]  C. Zuker,et al.  Opsin of Calliphora peripheral photoreceptors R1-6. Homology with Drosophila Rh1 and posttranslational processing. , 1990, The Journal of biological chemistry.

[43]  H. Khorana,et al.  Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. , 1990, The Journal of biological chemistry.

[44]  H. Khorana,et al.  Rhodopsin mutants that bind but fail to activate transducin. , 1990, Science.

[45]  J. Nathans Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. , 1990, Biochemistry.

[46]  Armando B. Corripio,et al.  Tuning of Industrial Control Systems , 1990 .

[47]  D. Oprian,et al.  Effect of carboxylic acid side chains on the absorption maximum of visual pigments. , 1989, Science.

[48]  H. Khorana,et al.  Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Crozier,et al.  The CO-I and CO-II region of honeybee mitochondrial DNA: evidence for variation in insect mitochondrial evolutionary rates. , 1989, Molecular biology and evolution.

[50]  Desmond G. Higgins,et al.  Fast and sensitive multiple sequence alignments on a microcomputer , 1989, Comput. Appl. Biosci..

[51]  R. Menzel,et al.  Color Vision Honey Bees: Phenomena and Physiological Mechanisms , 1989 .

[52]  H. Khorana,et al.  Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[53]  W. Harris,et al.  Targeted misexpression of a Drosophila opsin gene leads to altered visual function , 1988, Nature.

[54]  H. Khorana,et al.  A single amino acid substitution in rhodopsin (lysine 248----leucine) prevents activation of transducin. , 1988, The Journal of biological chemistry.

[55]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[56]  G. Rubin,et al.  A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  G. Rubin,et al.  A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophila melanogaster , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  E. Meyerowitz,et al.  An opsin gene that is expressed only in the R7 photoreceptor cell of Drosophila. , 1987, The EMBO journal.

[59]  W L Pak,et al.  Electrophysiological study of Drosophila rhodopsin mutants , 1986, The Journal of general physiology.

[60]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[61]  J. Nathans,et al.  Molecular genetics of inherited variation in human color vision. , 1986, Science.

[62]  T. Tanimura,et al.  3‐H‐YDROXYRETINAL AS A CHROMOPHORE OF Drosophila melanogaster VISUAL PIGMENT ANALYZED BY HIGH‐PRESSURE LIQUID CHROMATOGRAPHY , 1986 .

[63]  T. Shenk,et al.  Selection of sequence elements that substitute for the standard AATAAA motif which signals 3' processing and polyadenylation of late simian virus 40 mRNAs. , 1985, Nucleic acids research.

[64]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[65]  G. Rubin,et al.  Isolation and structure of a rhodopsin gene from D. melanogaster , 1985, Cell.

[66]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[67]  G. A. Kerkut,et al.  Comprehensive insect physiology, biochemistry, and pharmacology , 1985 .

[68]  Retrograde labelling of photoreceptors in different regions of the compound eyes of bees and ants , 1984, Journal of neurocytology.

[69]  G. Rubin,et al.  Analysis of P transposable element functions in drosophila , 1984, Cell.

[70]  Nicolas Franceschini,et al.  Chromatic Organization and Sexual Dimorphism of the Fly Retinal Mosaic , 1984 .

[71]  M. Heisenberg,et al.  Vision in Drosophila , 1984 .

[72]  G. Jones,et al.  Microspectrophotometry of single rhabdoms in the retina of the honeybee drone (Apis mellifera male) , 1983, The Journal of general physiology.

[73]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[74]  G. H. Jacobs Comparative Color Vision , 1981 .

[75]  P. Hargrave,et al.  Site of attachment of 11-cis-retinal in bovine rhodopsin. , 1980, Biochemistry.

[76]  Pigment transformation and electrical responses in retinula cells of drone, Apis mellifera male. , 1979, The Journal of physiology.

[77]  K. Kirschfeld,et al.  The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin , 1979, The Journal of general physiology.

[78]  R. Menzel Spectral Sensitivity and Color Vision in Invertebrates , 1979 .

[79]  N. Franceschini,et al.  Evidence for a sensitising pigment in fly photoreceptors , 1977, Nature.

[80]  F. Gribakin The distribution of the long wave photoreceptors in the compound eye of the honey bee as revealed by selective osmic staining. , 1972, Vision research.

[81]  M Heisenberg,et al.  Separation of receptor and lamina potentials in the electroretinogram of normal and mutant Drosophila. , 1971, The Journal of experimental biology.

[82]  V. Pokorný Treatise on invertibrate paleontology, Part R, Arthropoda 4 , 1970 .

[83]  F. Gribakin Cellular Basis of Colour Vision in the Honey Bee , 1969, Nature.

[84]  A. M. Roberts Effect of Electric Fields on Mice , 1969, Nature.

[85]  D. Bownds Site of Attachment of Retinal in Rhodopsin , 1967, Nature.

[86]  K. Frisch The dance language and orientation of bees , 1967 .

[87]  R. Moore,et al.  Treatise on Invertebrate Paleontology , 1950 .