Microfluidic flows in viscoelastic fluids

In this chapter we provide an overview of viscoelastic fluid flow at the microscale. We briefly review the rheology of these nonlinear fluids and assess its implications on the flow behavior. In particular, we discuss the appearance of viscoelastic instabilities, which are seen to occur even under creeping flow conditions. The first type of instability changes the flow type from symmetric to asymmetric, while the flow remains steady. The second (andmore frequent) type of instability, which sets in when elastic effects are enhanced, causes theflow to becomeunsteady varying in time periodically. This unsteadiness results in a nearly chaotic flow, bringing about a significant improvement in mixing performance. After a brief introduction to the theme of microfluidics, its basic principles, relevance and applications, this chapter is organized in five additional sections. Section 6.2 provides an overviewof the problemofmixing at themicroscale and of the current methods used to tackle this problem. Section 6.3 presents an introduction to non-Newtonian viscoelastic fluids describing their most relevant rheological properties. Section 6.4 presents the governing equations for Newtonian and nonNewtonian fluid flow, including the constitutive equations that describe the rheology of thefluids. Section 6.5 dealswith passivemixingmethods in viscoelasticfluidflows, whereas in Section 6.6 other forcing methods for promoting viscoelastic fluid flow at the microscale are briefly described.

[1]  S. Quake,et al.  From micro- to nanofabrication with soft materials. , 2000, Science.

[2]  G. McKinley,et al.  Rheological and geometric scaling of purely elastic flow instabilities , 1996 .

[3]  Z. Yang,et al.  Ultrasonic micromixer for microfluidic systems , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[4]  P. Yager,et al.  A rapid diffusion immunoassay in a T-sensor , 2001, Nature Biotechnology.

[5]  Gareth H. McKinley,et al.  Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries , 2007 .

[6]  Ole Hassager,et al.  Working group on numerical techniques , 1988 .

[7]  Lydéric Bocquet,et al.  Large Slip Effect at a Nonwetting Fluid-Solid Interface , 1999 .

[8]  R. Larson Going with the Flow , 2007, Science.

[9]  R. Poole,et al.  Purely elastic flow asymmetries. , 2007, Physical review letters.

[10]  Eric S. G. Shaqfeh,et al.  Purely elastic instabilities in viscometric flows , 1996 .

[11]  M.A. Hulsen,et al.  Thermodynamics of viscoelastic fluids: the temperature equation , 1998 .

[12]  Gerrit W. M. Peters,et al.  Modelling of non-isothermal viscoelastic flows , 1997 .

[13]  M. Crochet,et al.  On Viscoelastic Flows Through Abrupt Contractions , 1992 .

[14]  N. Lawson,et al.  Swirling flow of viscoelastic fluids. Part 2. Elastic effects , 2001, Journal of Fluid Mechanics.

[15]  P. Doyle,et al.  Conformational Preconditioning by Electrophoresis of DNA through a Finite Obstacle Array , 2008 .

[16]  H. Barnes,et al.  An introduction to rheology , 1989 .

[17]  Stephen Wiggins,et al.  Applied physics. Designing optimal micromixers. , 2004, Science.

[18]  K. Walters,et al.  Flow characteristics associated with abrupt changes in geometry in the case of highly elastic liquids , 1986 .

[19]  J. Koo,et al.  Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects , 2003 .

[20]  J. Gleeson Transient micromixing: Examples of laminar and chaotic stirring , 2005 .

[21]  S. Quake,et al.  Relaxation of a single DNA molecule observed by optical microscopy. , 1994, Science.

[22]  Howard A. Barnes,et al.  The yield stress myth? , 1985 .

[23]  H. Park,et al.  Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows. , 2008, Journal of Colloid and Interface Science.

[24]  Alex Groisman,et al.  A microfluidic rectifier: anisotropic flow resistance at low Reynolds numbers. , 2004, Physical review letters.

[25]  R. Adrian,et al.  Transition from laminar to turbulent flow in liquid filled microtubes , 2004 .

[26]  Fernando T. Pinho,et al.  Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-Thien-Tanner model. , 2010, Journal of colloid and interface science.

[27]  G. McKinley,et al.  Microfluidic rheometry , 2008 .

[28]  K. Ahn,et al.  High-resolution finite element simulation of 4:1 planar contraction flow of viscoelastic fluid , 2005 .

[29]  Paul Yager,et al.  Prominent microscopic effects in microfabricated fluidic analysis systems , 1997, Photonics West - Biomedical Optics.

[30]  Gareth H. McKinley,et al.  Investigating the stability of viscoelastic stagnation flows in T-shaped microchannels , 2009 .

[31]  P. Yager,et al.  Biotechnology at low Reynolds numbers. , 1996, Biophysical journal.

[32]  D E Smith,et al.  Single polymer dynamics in an elongational flow. , 1997, Science.

[33]  H. Mao,et al.  Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. , 2001, Analytical chemistry.

[34]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[35]  Yonggun Jun,et al.  Longest Relaxation Times of Double-Stranded and Single-Stranded DNA , 2007 .

[36]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[37]  L. Léger,et al.  Direct experimental evidence of slip in hexadecane: solid interfaces , 2000, Physical review letters.

[38]  A. Ajdari,et al.  Pumping liquids using asymmetric electrode arrays , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Suman Chakraborty,et al.  Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. , 2007, Analytica chimica acta.

[40]  Shizhi Qian,et al.  Magneto-Hydrodynamics Based Microfluidics. , 2009, Mechanics research communications.

[41]  R. Larson Constitutive equations for polymer melts and solutions , 1988 .

[42]  Victor A. Beck,et al.  Dynamics of DNA Polymers in Post Arrays: Comparison of Single Molecule Experiments and Simulations , 2007 .

[43]  P. Townsend,et al.  Secondary flows in pipes of square cross-section and the measurement of the second normal stress difference , 1976 .

[44]  Ruey-Jen Yang,et al.  Chaotic mixing in electro-osmotic flows driven by spatiotemporal surface charge modulation , 2009 .

[45]  A. Groisman,et al.  Elastic turbulence in a polymer solution flow , 2000, Nature.

[46]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[47]  Hengzi Wang,et al.  Optimizing layout of obstacles for enhanced mixing in microchannels , 2002 .

[48]  G. Boffetta,et al.  Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Feng-Ming Chang,et al.  Drag reduction in electro-osmosis of polymer solutions , 2007 .

[50]  N. Nguyen,et al.  Micromixer based on viscoelastic flow instability at low Reynolds number. , 2009, Biomicrofluidics.

[51]  Victor Steinberg,et al.  Elastic turbulence in curvilinear flows of polymer solutions , 2004, nlin/0401006.

[52]  D. V. Boger Viscoelastic Flows Through Contractions , 1987 .

[53]  V. Lebedev,et al.  Spectra of turbulence in dilute polymer solutions , 2002, nlin/0207008.

[54]  N. Nguyen,et al.  Fundamentals and Applications of Microfluidics , 2002 .

[55]  Nonlinear dynamics of the viscoelastic Kolmogorov flow , 2006, Journal of Fluid Mechanics.

[56]  G. McKinley,et al.  Cavity flows of elastic liquids: Purely elastic instabilities , 1998 .

[57]  M Gad El Hak LIQUIDS: THE HOLY GRAIL OF MICROFLUIDIC MODELING , 2005 .

[58]  T. Sridhar,et al.  A filament stretching device for measurement of extensional viscosity , 1993 .

[59]  F. Pinho,et al.  Purely elastic instabilities in three-dimensional cross-slot geometries , 2010 .

[60]  P. Doyle,et al.  Electrophoretic stretching of DNA molecules using microscale T junctions , 2007 .

[61]  Pakdel,et al.  Elastic Instability and Curved Streamlines. , 1996, Physical review letters.

[62]  Chong H. Ahn,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Review of Microvalves , 2022 .

[63]  F. Pinho,et al.  Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions , 2003 .

[64]  J. Santiago,et al.  Instability of electrokinetic microchannel flows with conductivity gradients , 2004 .

[65]  Patrick S Doyle,et al.  Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices. , 2006, Lab on a chip.

[66]  D. V. Boger,et al.  Further observations of elastic effects in tubular entry flows , 1986 .

[67]  P. Doyle,et al.  Design and numerical simulation of a DNA electrophoretic stretching device. , 2007, Lab on a chip.

[68]  J. M. Nóbrega,et al.  Accounting for temperature-dependent properties in viscoelastic duct flows , 2004 .

[69]  M. Bazant,et al.  Induced-charge electrokinetic phenomena: theory and microfluidic applications. , 2003, Physical review letters.

[70]  R. Larson,et al.  Stretching of a single tethered polymer in a uniform flow. , 1995, Science.

[71]  G. Whitesides,et al.  Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies , 2003, Electrophoresis.

[72]  G. McKinley,et al.  Simulations of extensional flow in microrheometric devices , 2008 .

[73]  P. Arratia,et al.  Elastic instabilities of polymer solutions in cross-channel flow. , 2006, Physical review letters.

[74]  Thermoviscoelasticity : Continuum-molecular connections , 1998 .

[75]  Claudio L A Berli,et al.  Electrokinetic flow of non-Newtonian fluids in microchannels. , 2008, Journal of colloid and interface science.

[76]  Nadine Aubry,et al.  Electro-hydrodynamic micro-fluidic mixer. , 2003, Lab on a chip.

[77]  G. Whitesides,et al.  Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Larry J. Markoski,et al.  Microfluidic fuel cell based on laminar flow , 2004 .

[79]  A. Hosoi,et al.  New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear , 2008 .

[80]  Kalman D. Migler,et al.  Elastic flow instability, curved streamlines, and mixing in microfluidic flows , 2004 .

[81]  G. Grégoire,et al.  Elastic turbulence in shear banding wormlike micelles. , 2010, Physical review letters.

[82]  S. Quake,et al.  Microfluidic Memory and Control Devices , 2003, Science.

[83]  S. Quake,et al.  Microfluidics in structural biology: smaller, faster ... better , 2003 .

[84]  R. Poole,et al.  Viscoelastic flows in mixing-separating cells , 2011 .

[85]  N. Nguyen,et al.  Polymer-based device for efficient mixing of viscoelastic fluids , 2006 .

[86]  George Em Karniadakis,et al.  MICROFLOWS AND NANOFLOWS , 2005 .

[87]  Ronald G. Larson,et al.  A purely elastic instability in Taylor–Couette flow , 1990, Journal of Fluid Mechanics.

[88]  Q. D. Nguyen,et al.  Measuring the Flow Properties of Yield Stress Fluids , 1992 .

[89]  Bingcheng Lin,et al.  Electrophoretic separations on microfluidic chips , 2007, Journal of Chromatography A.

[90]  D. J. Harrison,et al.  Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectrospray mass spectrometry. , 2000, Analytical chemistry.

[91]  H. Goto,et al.  Active micromixer for microfluidic systems using lead‐zirconate‐titanate(PZT)‐generated ultrasonic vibration , 2000, Electrophoresis.

[92]  Nam-Trung Nguyen,et al.  Micromixers?a review , 2005 .

[93]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[94]  D. Joseph,et al.  Principles of non-Newtonian fluid mechanics , 1974 .

[95]  T. McLeish,et al.  Emerging applications for models of molecular rheology , 2008 .

[96]  G. Whitesides,et al.  Components for integrated poly(dimethylsiloxane) microfluidic systems , 2002, Electrophoresis.

[97]  Nam-Trung Nguyen,et al.  Micromixers: Fundamentals, Design, and Fabrication , 2008 .

[98]  Howard A. Barnes,et al.  The yield stress—a review or ‘παντα ρει’—everything flows? , 1999 .

[99]  G. McKinley,et al.  FILAMENT-STRETCHING RHEOMETRY OF COMPLEX FLUIDS , 2002 .

[100]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[101]  Dhananjay Dendukuri,et al.  Controlled synthesis of nonspherical microparticles using microfluidics. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[102]  Eric S. G. Shaqfeh,et al.  The dynamics of single-molecule DNA in flow , 2005 .

[103]  G. Whitesides,et al.  Flexible Methods for Microfluidics , 2001 .

[104]  H. Bäumler,et al.  Electroosmosis and polymer depletion layers near surface conducting particles are detectable by low frequency electrorotation , 1999 .

[105]  P. Doyle,et al.  Studying confined polymers using single-molecule DNA experiments , 2008 .

[106]  Fernando T. Pinho,et al.  Efficient microfluidic rectifiers for viscoelastic fluid flow , 2010 .

[107]  F. Pinho,et al.  Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels , 2009 .

[108]  F. Pinho,et al.  Effect of the skimming layer on electro-osmotic—Poiseuille flows of viscoelastic fluids , 2011 .

[109]  Victor Steinberg,et al.  Elastic turbulence in von Karman swirling flow between two disks , 2007 .

[110]  R. Larson,et al.  Transitional pathway to elastic turbulence in torsional, parallel-plate flow of a polymer solution , 2006, Journal of Fluid Mechanics.

[111]  J. Rothstein,et al.  Extensional flow of a polystyrene Boger fluid through a 4 : 1 : 4 axisymmetric contraction/expansion , 1999 .

[112]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[113]  S. Quake,et al.  A microfabricated fluorescence-activated cell sorter , 1999, Nature Biotechnology.

[114]  Robert J. Poole,et al.  Divergent flow in contractions , 2007 .

[115]  F. Pinho,et al.  Effect of contraction ratio upon viscoelastic flow in contractions: The axisymmetric case , 2007 .

[116]  F. Pinho,et al.  On the effect of contraction ratio in viscoelastic flow through abrupt contractions , 2004 .

[117]  L. Blum,et al.  A novel low-cost approach of implementing electrochemiluminescence detection for microfluidic analytical systems , 2008 .

[118]  S. Colin Rarefaction and compressibility effects on steady and transient gas flows in microchannels , 2005 .

[119]  R. Poole,et al.  Purely-elastic flow asymmetries in flow-focusing devices , 2008 .

[120]  Howard A. Barnes,et al.  The yield stress—a review or 'panta roi'—everything flows? , 1999 .

[121]  Julio M. Ottino,et al.  Designing Optimal Micromixers , 2004, Science.

[122]  In Seok Kang,et al.  Mixing enhancement by using electrokinetic instability under time-periodic electric field , 2005 .

[123]  M. R. Freeman,et al.  Extensional instability in electro-osmotic microflows of polymer solutions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[124]  Vincent Legat,et al.  The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells , 1999 .

[125]  Martin Z. Bazant,et al.  Induced-charge electrokinetic phenomena , 2003 .

[126]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[127]  Masamichi Oishi,et al.  Creation of very-low-Reynolds-number chaotic fluid motions in microchannels using viscoelastic surfactant solution , 2010 .

[128]  J. Santiago,et al.  Convective and absolute electrokinetic instability with conductivity gradients , 2005, Journal of Fluid Mechanics.

[129]  W. Saarloos,et al.  An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows , 2007 .

[130]  V. Hessel,et al.  Micromixers—a review on passive and active mixing principles , 2005 .

[131]  T. Bayraktar,et al.  Characterization of liquid flows in microfluidic systems , 2006 .

[132]  D. Sinton,et al.  A sequential injection microfluidic mixing strategy , 2005 .

[133]  R. Thompson,et al.  A general transformation procedure for differential viscoelastic models , 2003 .

[134]  J. M. Rallison,et al.  Creeping flow of dilute polymer solutions past cylinders and spheres , 1988 .

[135]  Gareth H. McKinley,et al.  The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries , 2005 .

[136]  Howard A. Stone,et al.  Microfluidics: Tuned-in flow control , 2009 .

[137]  D. Cheng Yield stress: A time-dependent property and how to measure it , 1986 .

[138]  S. Ferree,et al.  The hydrodynamics of DNA electrophoretic stretch and relaxation in a polymer solution. , 2004, Biophysical journal.

[139]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[140]  H. Bau,et al.  A minute magneto hydro dynamic (MHD) mixer , 2001 .

[141]  M. R. Freeman,et al.  Abatement of mixing in shear-free elongationally unstable viscoelastic microflows. , 2010, Lab on a chip.

[142]  Howard A. Barnes,et al.  A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure , 1996 .

[143]  Suman Chakraborty,et al.  Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid , 2006 .

[144]  W. Tian,et al.  Introduction to Microfluidics , 2008 .

[145]  Nadine Aubry,et al.  Enhancement of microfluidic mixing using time pulsing. , 2003, Lab on a chip.

[146]  Gareth H. McKinley,et al.  Viscous flow through microfabricated hyperbolic contractions , 2007 .

[147]  A. B. Metzner,et al.  The Cox–Merz rule extended: A rheological model for concentrated suspensions and other materials with a yield stress , 1991 .

[148]  D. Saville Electrokinetic Effects with Small Particles , 1977 .

[149]  J. Sturm,et al.  Micro- and nanofluidics for DNA analysis , 2004, Analytical and bioanalytical chemistry.

[150]  R. Zare,et al.  Microfluidic platforms for single-cell analysis. , 2010, Annual review of biomedical engineering.

[151]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[152]  S Pennathur,et al.  Flow control in microfluidics: are the workhorse flows adequate? , 2008, Lab on a chip.

[153]  N. Obot TOWARD A BETTER UNDERSTANDING OF FRICTION AND HEAT/MASS TRANSFER IN MICROCHANNELS-- A LITERATURE REVIEW , 2000, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[154]  I. Mezić,et al.  Chaotic Mixer for Microchannels , 2002, Science.

[155]  S. Quake,et al.  Dynamic pattern formation in a vesicle-generating microfluidic device. , 2001, Physical review letters.

[156]  J. Cooper-White,et al.  Capillary Break-up Rheometry of Low-Viscosity Elastic Fluids , 2005 .

[157]  F. Pinho,et al.  Visualizations of Boger fluid flows in a 4:1 square/square contraction , 2005 .

[158]  Nam-Trung Nguyen,et al.  Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number , 2006 .

[159]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[160]  M. Webster,et al.  The distinctive CFD challenges of computational rheology , 2003 .

[161]  M. Gad-el-Hak The MEMS Handbook , 2001 .

[162]  R. Frias,et al.  Dynamics of high-Deborah-number entry flows: a numerical study , 2011 .

[163]  N. Phan-Thien,et al.  Fluid Mechanics of Viscoelasticity: General Principles, Constitutive Modelling, Analytical and Numerical Techniques , 2011 .

[164]  S. Muller,et al.  Direct measurements of viscoelastic flows of DNA in a 2:1 abrupt planar micro-contraction , 2008 .

[165]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[166]  A numerical method for steady and nonisothermal viscoelastic fluid flow for high Deborah and Péclet numbers , 1998 .

[167]  E. Casiraghi,et al.  Electroosmosis of polymer solutions in fused silica capillaries , 1994, Electrophoresis.

[168]  J. Ferry Viscoelastic properties of polymers , 1961 .

[169]  G. Karniadakis,et al.  Microflows and Nanoflows: Fundamentals and Simulation , 2001 .

[170]  K. Walters,et al.  Further remarks on the lip-vortex mechanism of vortex enhancement in planar-contraction flows , 1989 .

[171]  L. Lee,et al.  Flow pattern and molecular visualization of DNA solutions through a 4:1 planar micro-contraction , 2010 .

[172]  G. R. Facer,et al.  Capacitance cytometry: measuring biological cells one by one. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[173]  F. Pinho,et al.  Electro-osmotic flow of viscoelastic fluids in microchannels under asymmetric zeta potentials , 2011 .