Periplasmic expression of soluble single chain T cell receptors is rescued by the chaperone FkpA

[1]  Philippa Marrack,et al.  Many different Vβ CDR3s can reveal the inherent MHC reactivity of germline-encoded TCR V regions , 2009, Proceedings of the National Academy of Sciences.

[2]  P. Marrack,et al.  Germline-encoded amino acids in the αβ T cell receptor control thymic selection , 2009, Nature.

[3]  A. Pardi,et al.  The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains , 2009, Proceedings of the National Academy of Sciences.

[4]  P. Allen,et al.  Structural features of T cell receptor variable regions that enhance domain stability and enable expression as single-chain ValphaVbeta fragments. , 2009, Molecular immunology.

[5]  S. Dübel,et al.  Production systems for recombinant antibodies. , 2008, Frontiers in bioscience : a journal and virtual library.

[6]  P. Marrack,et al.  T cell receptor specificity for major histocompatibility complex proteins. , 2008, Current opinion in immunology.

[7]  Philippa Marrack,et al.  Evolutionarily conserved amino acids that control TCR-MHC interaction. , 2008, Annual review of immunology.

[8]  Philippa Marrack,et al.  Crossreactive T Cells spotlight the germline rules for alphabeta T cell-receptor interactions with MHC molecules. , 2008, Immunity.

[9]  I. Sandlie,et al.  Functional phage display of two murine α/β T-cell receptors is strongly dependent on fusion format, mode and periplasmic folding assistance , 2007 .

[10]  J. Kutok,et al.  Lymphomas can develop from B cells chronically helped by idiotype-specific T cells , 2007, The Journal of experimental medicine.

[11]  K. Garcia,et al.  How a Single T Cell Receptor Recognizes Both Self and Foreign MHC , 2007, Cell.

[12]  E. Adams,et al.  High-level bacterial secretion of single-chain αβ T-cell receptors , 2005 .

[13]  B. Bogen,et al.  Systemic Autoimmune Disease Caused by Autoreactive B Cells That Receive Chronic Help from Ig V Region-Specific T Cells1 , 2005, The Journal of Immunology.

[14]  A. Sewell,et al.  Soluble T cell receptors: novel immunotherapies. , 2005, Current opinion in pharmacology.

[15]  D. Summers,et al.  Recombinant protein secretion in Escherichia coli. , 2005, Biotechnology advances.

[16]  J. E. Stacy,et al.  Construction, evaluation and refinement of a large human antibody phage library based on the IgD and IgM variable gene repertoire. , 2005, Journal of immunological methods.

[17]  Guttorm Haraldsen,et al.  Primary antitumor immune response mediated by CD4+ T cells. , 2005, Immunity.

[18]  F. Baneyx,et al.  Recombinant protein folding and misfolding in Escherichia coli , 2004, Nature Biotechnology.

[19]  H. Taguchi,et al.  Chaperone-assisted folding of a single-chain antibody in a reconstituted translation system. , 2004, Biochemical and biophysical research communications.

[20]  S. Corisdeo,et al.  Functional expression and display of an antibody Fab fragment in Escherichia coli: study of vector designs and culture conditions. , 2004, Protein expression and purification.

[21]  Meir Glick,et al.  Stable, soluble T-cell receptor molecules for crystallization and therapeutics. , 2003, Protein engineering.

[22]  George Georgiou,et al.  Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis. , 2003, Journal of immunological methods.

[23]  J. McCluskey,et al.  The production, purification and crystallization of a soluble heterodimeric form of a highly selected T-cell receptor in its unliganded and liganded state. , 2002, Acta crystallographica. Section D, Biological crystallography.

[24]  Y. Iba,et al.  FK506 Binding Protein from the Hyperthermophilic Archaeon Pyrococcus horikoshii Suppresses the Aggregation of Proteins in Escherichia coli , 2002, Applied and Environmental Microbiology.

[25]  G. Georgiou,et al.  Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. , 2001, Protein expression and purification.

[26]  A. Plückthun,et al.  High enzymatic activity and chaperone function are mechanistically related features of the dimeric E. coli peptidyl-prolyl-isomerase FkpA. , 2001, Journal of molecular biology.

[27]  N. Sreerama,et al.  Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. , 2000, Analytical biochemistry.

[28]  A. Plückthun,et al.  The Periplasmic Escherichia coli Peptidylprolyl cis,trans-Isomerase FkpA , 2000, The Journal of Biological Chemistry.

[29]  A. Plückthun,et al.  The Periplasmic Escherichia coli Peptidylprolyl cis,trans-Isomerase FkpA , 2000, The Journal of Biological Chemistry.

[30]  H. Yanagi,et al.  Overexpression of Trigger Factor Prevents Aggregation of Recombinant Proteins in Escherichia coli , 2000, Applied and Environmental Microbiology.

[31]  A. Hayhurst,et al.  Improved expression characteristics of single-chain Fv fragments when fused downstream of the Escherichia coli maltose-binding protein or upstream of a single immunoglobulin-constant domain. , 2000, Protein expression and purification.

[32]  Gerhard Wagner,et al.  Structure, specificity and CDR mobility of a class II restricted single-chain T-cell receptor , 1999, Nature Structural Biology.

[33]  W. C. Johnson,et al.  Analyzing protein circular dichroism spectra for accurate secondary structures , 1999, Proteins.

[34]  A. Plückthun,et al.  Selection for a periplasmic factor improving phage display and functional periplasmic expression , 1998, Nature Biotechnology.

[35]  K. Garcia,et al.  T-cell receptor structure and TCR complexes. , 1997, Current opinion in structural biology.

[36]  D. Margulies,et al.  A three-domain T cell receptor is biologically active and specifically stains cell surface MHC/peptide complexes. , 1997, Journal of immunology.

[37]  D. Kranz,et al.  Binding properties and solubility of single-chain T cell receptors expressed in E. coli. , 1996, Molecular immunology.

[38]  P. Argos,et al.  Knowledge‐based protein secondary structure assignment , 1995, Proteins.

[39]  D. Hafler,et al.  Functional three-domain single-chain T-cell receptors. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[40]  E. Kawasaki,et al.  A general method for facilitating heterodimeric pairing between two proteins: application to expression of alpha and beta T-cell receptor extracellular segments. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Plückthun,et al.  Correctly folded T-cell receptor fragments in the periplasm of Escherichia coli. Influence of folding catalysts. , 1994, Journal of molecular biology.

[42]  N. Sreerama,et al.  Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods. , 1994, Journal of molecular biology.

[43]  E. Söderlind,et al.  Intra- and extracellular expression of an scFv antibody fragment in E. coli: effect of bacterial strains and pathway engineering using GroES/L chaperonins. , 1994, BioTechniques.

[44]  W. Harris,et al.  Spontaneous assembly of bivalent single chain antibody fragments in Escherichia coli. , 1994, Molecular immunology.

[45]  N. Sreerama,et al.  A self-consistent method for the analysis of protein secondary structure from circular dichroism. , 1993, Analytical biochemistry.

[46]  A. Plückthun Mono‐ and Bivalent Antibody Fragments Produced in Escherichia coli: Engineering, Folding and Antigen Binding , 1992, Immunological reviews.

[47]  H. Snodgrass,et al.  Restricted α/β receptor gene usage of idiotype‐specific major histocompatibility complex‐restricted T cells: Selection for CDR3‐related sequences , 1992 .

[48]  K. D. Hardman,et al.  Characterization of a single-chain T-cell receptor expressed in Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E. Ward,et al.  Secretion of T cell receptor fragments from recombinant Escherichia coli cells. , 1992, Journal of molecular biology.

[50]  P O Olins,et al.  Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. , 1992, The Journal of biological chemistry.

[51]  H R Hoogenboom,et al.  By-passing immunization. Human antibodies from V-gene libraries displayed on phage. , 1991, Journal of molecular biology.

[52]  R. Siliciano,et al.  A soluble, single-chain T-cell receptor fragment endowed with antigen-combining properties. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Johannes Buchner,et al.  Protein Aggregation in vitro and in vivo: A Quantitative Model of the Kinetic Competition between Folding and Aggregation , 1991, Bio/Technology.

[54]  E. Ward Expression and Secretion of T‐Cell Receptor Vα and Vβ Domains using Escherichia coli as a Host , 1991 .

[55]  G. A. Bowden,et al.  Folding and aggregation of beta-lactamase in the periplasmic space of Escherichia coli. , 1990, The Journal of biological chemistry.

[56]  S. Weiss,et al.  A stimulatory monoclonal antibody detecting T cell receptor diversity among idiotype‐specific, major histocompatibility complex‐restricted T cell clones , 1990, European journal of immunology.

[57]  John D Lambris,et al.  Minimum length of an idiotypic peptide and a model for its binding to a major histocompatibility complex class II molecule. , 1989, The EMBO journal.

[58]  E. Palmer,et al.  The T cell receptor Vβ6 domain imparts reactivity to the Mls-1a antigen , 1989 .

[59]  C. S. Devine,et al.  The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. , 1988, Gene.

[60]  H. Rammensee,et al.  Characterization of a murine monoclonal antibody specific for an allotypic determinant on T cell antigen receptor. , 1985, Journal of immunology.

[61]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[62]  I. Sandlie,et al.  Functional phage display of two murine alpha/beta T-cell receptors is strongly dependent on fusion format, mode and periplasmic folding assistance. , 2007, Protein engineering, design & selection : PEDS.

[63]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.

[64]  M. Little,et al.  High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. , 1997, Journal of immunological methods.

[65]  H. Snodgrass,et al.  Restricted alpha/beta receptor gene usage of idiotype-specific major histocompatibility complex-restricted T cells: selection for CDR3-related sequences. , 1992, European journal of immunology.

[66]  E. Ward Expression and secretion of T-cell receptor V alpha and V beta domains using Escherichia coli as a host. , 1991, Scandinavian journal of immunology.

[67]  E. Palmer,et al.  The T cell receptor V beta 6 domain imparts reactivity to the Mls-1a antigen. , 1989, Cellular immunology.

[68]  B. Bogen,et al.  Idiotope‐specific T cell clones that recognize syngeneic immunoglobulin fragments in the context of class II molecules , 1986, European journal of immunology.

[69]  J. Briand,et al.  Synthetic peptides and beta-chain gene rearrangements reveal a diversified T cell repertoire for a lambda light chain third hypervariable region. , 1986, European journal of immunology.

[70]  J. Briand,et al.  Synthetic peptides and β‐chain gene rearrangements reveal a diversified T cell repertoire for a λ light chain third hypervariable region , 1986 .

[71]  R. Zinkernagel,et al.  Cytotoxic T cell clone‐specific monoclonal antibodies used to select clonotypic antigen‐specific cytotoxic T cells , 1985, European journal of immunology.