Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria.

Some filamentous cyanobacteria can undergo a variety of cellular differentiation processes that permit their better adaptation to certain environmental conditions. These processes include the differentiation of hormogonia, short filaments aimed at the dispersal of the organism in the environment, of akinetes, cells resistant to various stress conditions, and of heterocysts, cells specialized in the fixation of atmospheric nitrogen in oxic environments. NtcA is a transcriptional regulator that operates global nitrogen control in cyanobacteria by activating (and in some cases repressing) many genes involved in nitrogen assimilation. NtcA is required for the triggering of heterocyst differentiation and for subsequent steps of its development and function. This requirement is based on the role of NtcA as an activator of the expression of hetR and other multiple genes at specific steps of the differentiation process. The products of these genes effect development as well as the distinct metabolism of the mature heterocyst. The different features found in the NtcA-dependent promoters, together with the cellular level of active NtcA protein, should have a role in the determination of the hierarchy of gene activation during the process of heterocyst differentiation.

[1]  R. Zhou,et al.  Identification of an Akinete Marker Gene in Anabaena variabilis , 2002, Journal of bacteriology.

[2]  M. Potts,et al.  Myoglobin in a Cyanobacterium , 1992, Science.

[3]  K. Forchhammer,et al.  Characterization of the glnB gene product of Nostoc punctiforme strain ATCC 29133: glnB or the PII protein may be essential. , 1998, Microbiology.

[4]  M. Merrick,et al.  PII Signal Transduction Proteins, Pivotal Players in Microbial Nitrogen Control , 2001, Microbiology and Molecular Biology Reviews.

[5]  K. Forchhammer,et al.  Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. , 2004, FEMS microbiology reviews.

[6]  P. Fay,et al.  Akinete development in the planktonic blue-green alga Anabaena circinalis , 1984 .

[7]  T. Wei,et al.  Two Anabaena sp. strain PCC 7120 DNA-binding factors interact with vegetative cell- and heterocyst-specific genes , 1994, Journal of bacteriology.

[8]  Jinsong Zhu,et al.  HcwA, an Autolysin, Is Required for Heterocyst Maturation in Anabaena sp. Strain PCC 7120 , 2001, Journal of bacteriology.

[9]  Jindong Zhao,et al.  HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  E. Flores,et al.  Amino acid transport systems required for diazotrophic growth in the cyanobacterium Anabaena sp. strain PCC 7120 , 1995, Journal of bacteriology.

[11]  A. Smith,et al.  Biochemical Basis of Obligate Autotrophy in Blue-Green Algae and Thiobacilli , 1967, Journal of bacteriology.

[12]  G. Schmetterer,et al.  Cytochrome c oxidase genes required for nitrogenase activity and diazotrophic growth in Anabaena sp. PCC 7120 , 2003, Molecular microbiology.

[13]  Jindong Zhao,et al.  Expression of hetN during heterocyst differentiation and its inhibition of hetR up‐regulation in the cyanobacterium Anabaena sp. PCC 7120 , 2002, FEBS letters.

[14]  J. Meeks,et al.  Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. , 2002, Microbiology.

[15]  A. Muro-Pastor,et al.  NtcA-Dependent Expression of the devBCAOperon, Encoding a Heterocyst-Specific ATP-Binding Cassette Transporter in Anabaena spp , 2001, Journal of bacteriology.

[16]  H. M. Lee,et al.  Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-mediated regulation of nitrate and nitrite uptake in the Cyanobacterium synechococcus sp. PCC 7942. , 2000, European journal of biochemistry.

[17]  R. Haselkorn,et al.  Newly Identified Cytochrome c Oxidase Operon in the Nitrogen-Fixing Cyanobacterium Anabaena sp. Strain PCC 7120 Specifically Induced in Heterocysts , 2002, Journal of bacteriology.

[18]  D. G. Adams,et al.  The Organisation and Control of Cell Division Genes Expressed During Differentiation in Cyanobacteria , 1999 .

[19]  Enrique Flores,et al.  Uptake of 2-Oxoglutarate inSynechococcus Strains Transformed with the Escherichia coli kgtP Gene , 2000, Journal of bacteriology.

[20]  A. Muro-Pastor,et al.  Nitrogen Control in Cyanobacteria , 2001, Journal of bacteriology.

[21]  P. Lindblad,et al.  Hydrogen uptake in Nostoc sp. strain PCC 73102. Cloning and characterization of a hupSL homologue , 1998, Archives of Microbiology.

[22]  H. Yoon,et al.  Heterocyst formation in Anabaena. , 1998, Current opinion in microbiology.

[23]  E. Flores,et al.  Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC7120 , 1994, Molecular microbiology.

[24]  J. Meeks,et al.  Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133 , 1995, Journal of bacteriology.

[25]  S. Fisher,et al.  Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence! , 1999, Molecular microbiology.

[26]  H. Yoon,et al.  Heterocyst pattern formation controlled by a diffusible peptide. , 1998, Science.

[27]  R. Haselkorn,et al.  The patB gene product, required for growth of the cyanobacterium Anabaena sp. strain PCC 7120 under nitrogen-limiting conditions, contains ferredoxin and helix-turn-helix domains , 1993, Journal of bacteriology.

[28]  C. Wolk,et al.  Pathway of nitrogen metabolism after fixation of 13N-labeled nitrogen gas by the cyanobacterium, Anabaena cylindrica. , 1976, The Journal of biological chemistry.

[29]  F. Florencio,et al.  The GS‐GOGAT pathway is not operative in the heterocysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120 , 2000, FEBS letters.

[30]  E. Flores,et al.  Nitrogen-regulated Genes for the Metabolism of Cyanophycin, a Bacterial Nitrogen Reserve Polymer , 2004, Journal of Biological Chemistry.

[31]  M. Guerrero,et al.  Shift in carbon flow and stimulation of amino-acid turnover induced by nitrate and ammonium assimilation in Anacystis nidulans , 1993, Planta.

[32]  R. Haselkorn,et al.  The hglK gene is required for localization of heterocyst-specific glycolipids in the cyanobacterium Anabaena sp. strain PCC 7120 , 1995, Journal of bacteriology.

[33]  J. Reyes,et al.  Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. , 2001, The Journal of biological chemistry.

[34]  R. Haselkorn,et al.  Deletion of a 55-kilobase-pair DNA element from the chromosome during heterocyst differentiation of Anabaena sp. strain PCC 7120 , 1988, Journal of bacteriology.

[35]  R. Zhou,et al.  A Two-component System Mediates Developmental Regulation of Biosynthesis of a Heterocyst Polysaccharide* , 2003, Journal of Biological Chemistry.

[36]  J. Waterbury,et al.  Generic assignments, strain histories, and properties of pure cultures of cyanobacteria , 1979 .

[37]  R. Rippka,et al.  [22] Cellular differentiation: Hormogonia and baeocytes , 1988 .

[38]  C. Wolk,et al.  Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena , 1993, Molecular microbiology.

[39]  X. Xu,et al.  Lipopolysaccharide dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120 , 1997, Journal of bacteriology.

[40]  E. Flores,et al.  2‐Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoter , 2002, FEBS letters.

[41]  H. Paerl,et al.  GlbN (cyanoglobin) is a peripheral membrane protein that is restricted to certain Nostoc spp , 1996, Journal of bacteriology.

[42]  R. Krämer,et al.  AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum , 2000, Molecular microbiology.

[43]  A. Burkovski,et al.  Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD † , 2001, Molecular microbiology.

[44]  J. Leigh,et al.  A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis , 2002, Molecular microbiology.

[45]  R. Haselkorn,et al.  Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. , 1991, Genes & development.

[46]  A. Muro-Pastor,et al.  Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development , 2002, Molecular microbiology.

[47]  J. Meeks,et al.  Regulation of Cellular Differentiation in Filamentous Cyanobacteria in Free-Living and Plant-Associated Symbiotic Growth States , 2002, Microbiology and Molecular Biology Reviews.

[48]  E. Flores,et al.  Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC 7942. , 2003, FEMS microbiology letters.

[49]  F. Leganés,et al.  Two mutations that block heterocyst differentiation have different effects on akinete differentiation in Nostoc ellipsosporum , 1994, Molecular microbiology.

[50]  James W. Golden,et al.  PatS and Products of Nitrogen Fixation Control Heterocyst Pattern , 2001, Journal of bacteriology.

[51]  N. G. Carr,et al.  The Biology of Cyanobacteria , 1982 .

[52]  J. W. Golden,et al.  Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  F. Leganés,et al.  pbpB, a Gene Coding for a Putative Penicillin-Binding Protein, Is Required for Aerobic Nitrogen Fixation in the Cyanobacterium Anabaena sp. Strain PCC7120 , 2001, Journal of bacteriology.

[54]  E. Flores,et al.  Analysis of binding sites for the nitrogen-control transcription factor NtcA in the promoters of Synechococcus nitrogen-regulated genes. , 2002, Biochimica et biophysica acta.

[55]  R. Haselkorn,et al.  Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  F. Leganés,et al.  A transposition-induced mutant of Nostoc ellipsosporum implicates an arginine-biosynthetic gene in the formation of cyanophycin granules and of functional heterocysts and akinetes. , 1998, Microbiology.

[57]  D. Balkwill,et al.  Heterocyst differentiation in the cyanobacterium Mastigocladus laminosus , 1984, Journal of bacteriology.

[58]  A. Ninfa,et al.  PII signal transduction proteins. , 2000, Trends in microbiology.

[59]  T. Black,et al.  Analysis of a Het- mutation in Anabaena sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing , 1994, Journal of bacteriology.

[60]  N. T. Marsac Differentiation of Hormogonia and Relationships with Other Biological Processes , 1994 .

[61]  J. Meeks,et al.  Formation of glutamine from (/sup 13/N)ammonia, (/sup 13/N)dinitrogen, and (/sup 14/C)glutamate by heterocysts isolated from Anabaena cylindrica , 1977 .

[62]  T. Wei,et al.  Transcription of the Anabaena sp. strain PCC 7120 ntcA gene: multiple transcripts and NtcA binding , 1996, Journal of bacteriology.

[63]  G. Guglielmi,et al.  Hormogonium Differentiation in the Cyanobacterium Calothrix: A Photoregulated Developmental Process. , 1991, The Plant cell.

[64]  J. A. G. O. D. Alda,et al.  Changes in intracellular amino acids and organic acids induced by nitrogen starvation and nitrate or ammonium resupply in the cyanobacterium Phormidium laminosum , 1996, Planta.

[65]  R. Zhou,et al.  Evidence that HetR protein is an unusual serine-type protease. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[66]  In vivo activity of the nitrogen control transcription factor NtcA is subjected to metabolic regulation in Synechococcus sp. strain PCC 7942. , 2004, FEMS microbiology letters.

[67]  D. Holland,et al.  Identification and characterization of hetA, a gene that acts early in the process of morphological differentiation of heterocysts , 1990, Journal of bacteriology.

[68]  L. Wray,et al.  Bacillus subtilis Glutamine Synthetase Controls Gene Expression through a Protein-Protein Interaction with Transcription Factor TnrA , 2001, Cell.

[69]  C. Wolk,et al.  Anabaena sp. strain PCC 7120 responds to nitrogen deprivation with a cascade-like sequence of transcriptional activations , 1997, Journal of bacteriology.

[70]  M. Herdman [21] Cellular differentiation: Akinetes , 1988 .

[71]  R. Haselkorn,et al.  Vectors for determining the differential expression of genes in heterocysts and vegetative cells of Anabaena sp. strain PCC 7120 , 1995, Journal of bacteriology.

[72]  J. Meeks,et al.  The Unique Cyanobacterial Protein OpcA Is an Allosteric Effector of Glucose-6-phosphate Dehydrogenase in Nostoc punctiformeATCC 29133* , 2001, The Journal of Biological Chemistry.

[73]  W. V. van Heeswijk,et al.  Signal transduction to the Azotobacter vinelandii NIFL–NIFA regulatory system is influenced directly by interaction with 2‐oxoglutarate and the PII regulatory protein , 2000, The EMBO journal.

[74]  Brenda S. Pratte,et al.  Effect on Heterocyst Differentiation of Nitrogen Fixation in Vegetative Cells of the Cyanobacterium Anabaena variabilisATCC 29413 , 2001, Journal of bacteriology.

[75]  H. M. Lee,et al.  A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium , 1998, FEBS letters.

[76]  O. Koksharova,et al.  A Novel Gene That Bears a DnaJ Motif Influences Cyanobacterial Cell Division , 2002, Journal of bacteriology.

[77]  Xu-Dong Xu,et al.  Role for hetC in the Transition to a Nondividing State during Heterocyst Differentiation inAnabaena sp , 2001, Journal of bacteriology.

[78]  T. Wei,et al.  A sequence-specific DNA-binding factor (VF1) from Anabaena sp. strain PCC 7120 vegetative cells binds to three adjacent sites in the xisA upstream region , 1990, Journal of bacteriology.

[79]  M. Herdman,et al.  Akinetes of the Cyanobacterium Nostoc PCC 7524: Macromolecular Composition, Structure and Control of Differentiation , 1979 .

[80]  T. Fatma,et al.  Cell‐type specificity of the Anabaena fdxN‐element rearrangement requires xisH and xisl , 1997, Molecular microbiology.

[81]  E. Flores,et al.  Transcriptional effects of the signal transduction protein PII (glnB gene product) on NtcA‐dependent genes in Synechococcus sp. PCC 7942 , 2003, FEBS letters.

[82]  B. Masepohl,et al.  The heterocyst-specific fdxH gene product of the cyanobacterium Anabaena sp. PCC 7120 is important but not essential for nitrogen fixation , 1997, Molecular and General Genetics MGG.

[83]  W. Buikema,et al.  The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120 , 2001, Molecular microbiology.

[84]  Á. Mérida,et al.  Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium , 1991, Journal of bacteriology.

[85]  L. Sherman,et al.  HETEROCYST DEVELOPMENT AND LOCALIZATION OF CYANOPHYCIN IN N2‐FIXING CULTURES OF ANABAENA SP. PCC 7120 (CYANOBACTERIA) , 2000 .

[86]  T. Wei,et al.  Anabaena sp. strain PCC 7120 ntcA gene required for growth on nitrate and heterocyst development , 1994, Journal of bacteriology.

[87]  P. Hebbar,et al.  Characterization of devH, a Gene Encoding a Putative DNA Binding Protein Required for Heterocyst Function inAnabaena sp. Strain PCC 7120 , 2000, Journal of bacteriology.

[88]  J. W. Golden,et al.  hetL Overexpression Stimulates Heterocyst Formation in Anabaena sp. Strain PCC 7120 , 2002, Journal of bacteriology.

[89]  Cheng-Cai Zhang,et al.  Developmental Regulation of the Cell Division Protein FtsZ in Anabaena sp. Strain PCC 7120, a Cyanobacterium Capable of Terminal Differentiation , 2000, Journal of bacteriology.

[90]  Mike Merrick,et al.  Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB , 2002, The EMBO journal.

[91]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[92]  R. Haselkorn,et al.  Molecular cloning and nucleotide sequence analysis of the gene coding for heterocyst ferredoxin from the cyanobacterium Anabaena sp. strain PCC 7120 , 1988, Molecular and General Genetics MGG.

[93]  G. Peschek,et al.  The Phototrophic Prokaryotes , 1999, Springer US.

[94]  E. Flores,et al.  Molecular mechanism for the operation of nitrogen control in cyanobacteria. , 1994, The EMBO journal.

[95]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology , 1994 .

[96]  A. Muro-Pastor,et al.  The hetC Gene Is a Direct Target of the NtcA Transcriptional Regulator in Cyanobacterial Heterocyst Development , 1999, Journal of bacteriology.

[97]  K. Forchhammer,et al.  Signal Transduction Protein PII Is Required for NtcA-Regulated Gene Expression during Nitrogen Deprivation in the Cyanobacterium Synechococcus elongatus Strain PCC 7942 , 2003, Journal of bacteriology.

[98]  B. Masepohl,et al.  The ferredoxin-encoding fdxN gene of the filamentous cyanobacterium Anabaena variabilis ATCC 29413 is not essential for nitrogen fixation. , 1997, The New phytologist.

[99]  C. Wolk Heterocyst Formation in Anabaena , 2000 .

[100]  S. Hannus,et al.  The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120 , 1998, Molecular microbiology.

[101]  C. Wolk,et al.  Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena. , 1990, The EMBO journal.

[102]  R. Haselkorn,et al.  Heterocyst-Specific Expression of patB, a Gene Required for Nitrogen Fixation in Anabaena sp. Strain PCC 7120 , 2003, Journal of bacteriology.

[103]  J. Reyes,et al.  Glutamine synthetase inactivation by protein-protein interaction. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[104]  A. Ernst,et al.  Heterocyst Metabolism and Development , 1994 .

[105]  W. Lockau,et al.  A mutant of the cyanobacterium Anabaena variabilis ATCC 29413 lacking cyanophycin synthetase: growth properties and ultrastructural aspects. , 2001, FEMS microbiology letters.

[106]  E. Flores,et al.  The NtcA-activated amt1 gene encodes a permease required for uptake of low concentrations of ammonium in the cyanobacterium Synechococcus sp. PCC 7942. , 2002, Microbiology.

[107]  C.-C. Zhang,et al.  Cloning and characterisation of the pknD gene encoding an eukaryotic-type protein kinase in the cyanobacterium Anabaena sp. PCC7120 , 1998, Molecular and General Genetics MGG.

[108]  Robert Haselkorn,et al.  Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena , 1985, Nature.

[109]  J. Meeks,et al.  The devR gene product is characteristic of receivers of two-component regulatory systems and is essential for heterocyst development in the filamentous cyanobacterium Nostoc sp. strain ATCC 29133 , 1996, Journal of bacteriology.

[110]  R. Haselkorn,et al.  Protein HU from the cyanobacterium Anabaena. , 1994, Biochimie.

[111]  B. Bergman,et al.  Ultrastructural characterisation of cells specialised for nitrogen fixation in a non-heterocystous cyanobacterium,Trichodesmium spp. , 1997, Protoplasma.

[112]  H. Böhme Regulation of nitrogen fixation in heterocyst-forming cyanobacteria , 1998 .

[113]  B. Bergman,et al.  Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum. , 2003, Microbiology.

[114]  H. Papen,et al.  The isocitrate dehydrogenase from cyanobacteria , 2004, Archives of Microbiology.

[115]  L. Curatti,et al.  Sucrose is involved in the diazotrophic metabolism of the heterocyst‐forming cyanobacterium Anabaena sp , 2002, FEBS letters.

[116]  J. Meeks,et al.  The hetF Gene Product Is Essential to Heterocyst Differentiation and Affects HetR Function in the Cyanobacterium Nostoc punctiforme , 2001, Journal of bacteriology.

[117]  R. Haselkorn,et al.  Organization and transcription of genes important in Anabaena heterocyst differentiation. , 1983, Annales de microbiologie.

[118]  D. Bryant The Molecular Biology of Cyanobacteria , 1994, Advances in Photosynthesis.

[119]  F. Leganés,et al.  A third genetic locus required for the formation of heterocysts in Anabaena sp. strain PCC 7120 , 1994, Journal of bacteriology.

[120]  M. Peleato,et al.  Expression of ferredoxin-NADP+ reductase in heterocysts from Anabaena sp. , 1996, The Biochemical journal.

[121]  C. Wolk,et al.  hetC, a gene coding for a protein similar to bacterial ABC protein exporters, is involved in early regulation of heterocyst differentiation in Anabaena sp. strain PCC 7120 , 1997, Journal of bacteriology.

[122]  R. Haselkorn,et al.  Suppression of heterocyst differentiation in Anabaena PCC 7120 by a cosmid carrying wild-type genes encoding enzymes for fatty acid synthesis , 1997 .

[123]  R. Haselkorn,et al.  Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC 7120. The nifB-fdxN-nifS-nifU operon. , 1989, The Journal of biological chemistry.

[124]  O. Koksharova,et al.  Novel DNA-Binding Proteins in the Cyanobacterium Anabaena sp. Strain PCC 7120 , 2002, Journal of bacteriology.

[125]  J. Reyes,et al.  NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803 , 2000, Molecular microbiology.

[126]  R. Haselkorn,et al.  Different promoters for the Anabaena glutamine synthetase gene during growth using molecular or fixed nitrogen , 1983, Nature.

[127]  S. Laurent,et al.  An increase in the level of 2-oxoglutarate promotes heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. , 2003, Microbiology.

[128]  T. Thiel,et al.  Metabolic activities of isolated akinetes of the cyanobacterium Nostoc spongiaeforme , 1983, Journal of bacteriology.

[129]  Cheng-Cai Zhang,et al.  Molecular and Genetic Analysis of Two Closely Linked Genes That Encode, Respectively, a Protein Phosphatase 1/2A/2B Homolog and a Protein Kinase Homolog in the CyanobacteriumAnabaena sp. Strain PCC 7120 , 1998, Journal of bacteriology.

[130]  T. Happe,et al.  Transcriptional and Mutational Analysis of the Uptake Hydrogenase of the Filamentous CyanobacteriumAnabaena variabilis ATCC 29413 , 2000, Journal of bacteriology.

[131]  E. Flores,et al.  Assimilatory Nitrogen Metabolism and Its Regulation , 1994 .

[132]  J. Meeks,et al.  DNA binding properties of the HrmR protein of Nostoc punctiforme responsible for transcriptional regulation of genes involved in the differentiation of hormogonia , 2003, Molecular microbiology.

[133]  Jinsong Zhu,et al.  Regulation of hepA ofAnabaena sp. Strain PCC 7120 by Elements 5′ from the Gene and by hepK , 1998, Journal of bacteriology.

[134]  J. Meeks,et al.  A polyketide-synthase-like gene is involved in the synthesis of heterocyst glycolipids in Nostoc punctiforme strain ATCC 29133 , 1997, Archives of Microbiology.

[135]  A. Muro-Pastor,et al.  Constitutive and nitrogen‐regulated promoters of the petH gene encoding ferredoxin:NADP+ reductase in the heterocyst‐forming cyanobacterium Anabaena sp , 1999, FEBS letters.

[136]  D. G. Adams,et al.  Tansley Review No. 107. Heterocyst and akinete differentiation in cyanobacteria , 1999 .

[137]  R. Ebright,et al.  Transcription activation by catabolite activator protein (CAP). , 1999, Journal of molecular biology.

[138]  J. Meeks,et al.  Cellular differentiation in the cyanobacterium Nostoc punctiforme , 2002, Archives of Microbiology.

[139]  S. Maeda,et al.  Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[140]  C. Wolk,et al.  Evidence that the hanA gene coding for HU protein is essential for heterocyst differentiation in, and cyanophage A-4(L) sensitivity of, Anabaena sp. strain PCC 7120 , 1996, Journal of bacteriology.

[141]  R. Haselkorn,et al.  The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[142]  J. Meeks,et al.  Formation of glutamine from [13n]ammonia, [13n]dinitrogen, and [14C]glutamate by heterocysts isolated from Anabaena cylindrica , 1977, Journal of bacteriology.