Colored Discrete Spaces: Higher Dimensional Combinatorial Maps and Quantum Gravity
暂无分享,去创建一个
[1] Steven Weinberg,et al. A Model of Leptons , 1967 .
[2] Éric Fusy,et al. Bijections for planar maps with boundaries , 2015, J. Comb. Theory, Ser. A.
[3] Marc Noy,et al. Graph classes with given 3‐connected components: Asymptotic enumeration and random graphs , 2009, Random Struct. Algorithms.
[4] J. Maldacena,et al. Supersymmetric Sachdev-Ye-Kitaev models , 2017 .
[5] V. Bonzom. New 1/N expansions in random tensor models , 2012, 1211.1657.
[6] V. Rivasseau,et al. Double scaling in tensor models with a quartic interaction , 2013, 1307.5281.
[7] G. Schaeffer,et al. Regular colored graphs of positive degree , 2013, 1307.5279.
[8] Éric Fusy,et al. A simple model of trees for unicellular maps , 2012, J. Comb. Theory A.
[9] C. Peng,et al. A supersymmetric SYK-like tensor model , 2016, Journal of High Energy Physics.
[10] Olivier Bernardi,et al. An analogue of the Harer-Zagier formula for unicellular maps on general surfaces , 2010, Adv. Appl. Math..
[11] Edward A. Bender,et al. The Number of Degree-Restricted Rooted Maps on the Sphere , 1994, SIAM J. Discret. Math..
[12] J. Maldacena,et al. Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.
[13] Carlo Gagliardi,et al. Extending the concept of genus to dimension $n$ , 1981 .
[14] Scott Sheffield,et al. Liouville quantum gravity and KPZ , 2008, 0808.1560.
[15] Sebastian Ehrlichmann,et al. Quantum Geometry A Statistical Field Theory Approach , 2016 .
[16] R. Gurău,et al. Analyticity results for the cumulants in a random matrix model , 2014, 1409.1705.
[17] S. Sheffield,et al. Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric , 2015, 1507.00719.
[18] I. Klebanov,et al. Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models , 2016, 1611.08915.
[19] M. R. Casali,et al. G-degree for singular manifolds , 2017, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
[20] R. Gurau. The 1/N Expansion of Colored Tensor Models , 2010, 1011.2726.
[21] B. Eynard,et al. Topological expansion for the 1-hermitian matrix model correlation functions , 2004 .
[22] Ye,et al. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.
[23] Éric Fusy,et al. Unified bijections for maps with prescribed degrees and girth , 2011, J. Comb. Theory, Ser. A.
[24] R. L. Stratonovich. On a Method of Calculating Quantum Distribution Functions , 1957 .
[25] Timothy R. S. Walsh,et al. Hypermaps versus bipartite maps , 1975 .
[26] Guillaume Chapuy,et al. A bijection for covered maps, or a shortcut between Harer-Zagierʼs and Jacksonʼs formulas , 2011, J. Comb. Theory, Ser. A.
[27] C. Krishnan,et al. Random matrices and holographic tensor models , 2017, Journal of High Energy Physics.
[28] V. Rivasseau,et al. The Multiscale Loop Vertex Expansion , 2013, 1312.7226.
[29] P. Narayan,et al. SYK-like tensor models on the lattice , 2017, 1705.01554.
[30] Adrian Tanasa,et al. O(N) Random Tensor Models , 2015, 1512.06718.
[31] C. Peng. Vector models and generalized SYK models , 2017, 1704.04223.
[32] Carlo Gagliardi,et al. Regular imbeddings of edge-coloured graphs , 1981 .
[33] M. Mulazzani,et al. Compact 3-manifolds via 4-colored graphs , 2013, 1304.5070.
[34] M. R. Casali,et al. Topology in colored tensor models via crystallization theory , 2017, Journal of Geometry and Physics.
[35] I. Klebanov,et al. On large N limit of symmetric traceless tensor models , 2017, Journal of High Energy Physics.
[36] E. Witten,et al. More on supersymmetric and 2d analogs of the SYK model , 2017, Journal of High Energy Physics.
[37] W. T. Tutte. A Census of Planar Maps , 1963, Canadian Journal of Mathematics.
[38] J. Ryan,et al. Colored Tensor Models - a Review , 2011, 1109.4812.
[39] Scott Sheffield,et al. Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding , 2016, The Annals of Probability.
[40] D. Aldous. Stochastic Analysis: The Continuum random tree II: an overview , 1991 .
[41] Valentin Bonzom,et al. Critical behavior of colored tensor models in the large N limit , 2011, 1105.3122.
[42] Edward A. Bender,et al. The number of rooted maps on an orientable surface , 1991, J. Comb. Theory, Ser. B.
[43] J. L. Gall,et al. The topological structure of scaling limits of large planar maps , 2006, math/0607567.
[44] Carlo Gagliardi,et al. The only genus zero n-manifold is S^n , 1982 .
[45] Anirvan M. Sengupta,et al. NEW CRITICAL BEHAVIOR IN d = 0 LARGE-N MATRIX MODELS , 1990 .
[46] V. Vargas,et al. Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.
[47] P. Cristofori. Heegard and regular genus agree for compact 3-manifolds , 1998 .
[48] C. Gagliardi. On a class of 3-dimensional polyhedra , 1987, ANNALI DELL UNIVERSITA DI FERRARA.
[49] Augusto Sagnotti,et al. The ultraviolet behavior of Einstein gravity , 1986 .
[50] A proposal for strings at D > 62; 1 , 1992, hep-th/9208026.
[51] P. Francesco,et al. Census of planar maps: From the one-matrix model solution to a combinatorial proof , 2002, cond-mat/0207682.
[52] V. Rivasseau,et al. The 1/N Expansion of Multi-Orientable Random Tensor Models , 2013, Annales Henri Poincaré.
[53] P. Francesco. Rectangular matrix models and combinatorics of colored graphs , 2002, cond-mat/0208037.
[54] R. Gurau. The complete 1/N expansion of a SYK–like tensor model , 2016, 1611.04032.
[55] Carlo Gagliardi,et al. Handles in Graphs and Sphere Bundles over S1 , 1987, Eur. J. Comb..
[56] R. Gurau. Quenched equals annealed at leading order in the colored SYK model , 2017, 1702.04228.
[57] V. Rivasseau,et al. Universality and Borel Summability of Arbitrary Quartic Tensor Models , 2014, 1403.0170.
[58] E. Guitter,et al. Coloring random triangulations , 1998 .
[59] L. Lionni,et al. Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders , 2017, 1702.06944.
[60] M. Mulazzani,et al. BLOBS AND FLIPS ON GEMS , 2006 .
[61] Simplicial Quantum Gravity and Random Lattices , 1993, hep-th/9303127.
[62] Valentin Bonzom,et al. Random tensor models in the large N limit: Uncoloring the colored tensor models , 2012, 1202.3637.
[63] J. F. Le Gall,et al. Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere , 2006 .
[64] M. Bousquet-M'elou. Rational and algebraic series in combinatorial enumeration , 2008, 0805.0588.
[65] H. Erbin,et al. Conformality of 1/N corrections in Sachdev-Ye-Kitaev-like models , 2017, Physical Review D.
[66] A. Polyakov. Quantum Geometry of Bosonic Strings , 1981 .
[67] Junggi Yoon,et al. Bi-local holography in the SYK model , 2016, 1603.06246.
[68] Maciej Dolega,et al. A bijection for rooted maps on general surfaces (extended abstract) , 2015 .
[69] S. Dartois,et al. Blobbed topological recursion for the quartic melonic tensor model , 2016, 1612.04624.
[70] B. Eynard,et al. An analysis of the intermediate field theory of T4 tensor model , 2014, 1409.5751.
[71] E. Witten. An SYK-like model without disorder , 2016, Journal of Physics A: Mathematical and Theoretical.
[72] F. Ferrari. The large $D$ limit of planar diagrams , 2017, Annales de l’Institut Henri Poincaré D.
[73] Luca Lionni,et al. Counting Gluings of Octahedra , 2016, Electron. J. Comb..
[74] J. Maldacena,et al. A bound on chaos , 2015, Journal of High Energy Physics.
[75] Guillaume Chapuy. A new combinatorial identity for unicellular maps, via a direct bijective approach , 2011, Adv. Appl. Math..
[76] Razvan Gurau,et al. The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension , 2011, 1102.5759.
[77] D. Benedetti,et al. Symmetry breaking in tensor models , 2015, 1506.08542.
[78] R. Gurau. The 1/N Expansion of Tensor Models with Two Symmetric Tensors , 2017, Communications in Mathematical Physics.
[79] V. Rivasseau,et al. Note on the Intermediate Field Representation of ϕ2k$\phi ^{2k}$ Theory in Zero Dimension , 2016, Mathematical Physics, Analysis and Geometry.
[80] C. Krishnan,et al. Towards a finite-N hologram , 2017, 1706.05364.
[81] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[82] M. Gross. Tensor models and simplicial quantum gravity in >2-D , 1992 .
[83] T. Regge. General relativity without coordinates , 1961 .
[84] J. Hubbard. Calculation of Partition Functions , 1959 .
[85] Naoki Sasakura,et al. TENSOR MODEL FOR GRAVITY AND ORIENTABILITY OF MANIFOLD , 1991 .
[86] V. Rivasseau. Loop vertex expansion for higher-order interactions , 2017, 1702.07602.
[87] G. Korchemsky. MATRIX MODEL PERTURBED BY HIGHER ORDER CURVATURE TERMS , 1992 .
[88] R. Cori,et al. Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.
[89] Guillaume Chapuy,et al. Simple recurrence formulas to count maps on orientable surfaces , 2015, J. Comb. Theory, Ser. A.
[90] Bergfinnur Durhuus,et al. THREE-DIMENSIONAL SIMPLICIAL QUANTUM GRAVITY AND GENERALIZED MATRIX MODELS , 1991 .
[91] J. Polchinski,et al. The spectrum in the Sachdev-Ye-Kitaev model , 2016, 1601.06768.
[92] Jean-Franccois Le Gall,et al. Uniqueness and universality of the Brownian map , 2011, 1105.4842.
[93] Olivier Bernardi,et al. Unified bijections for planar hypermaps with general cycle-length constraints , 2014, Annales de l’Institut Henri Poincaré D.
[94] Sóstenes Lins,et al. Graph-encoded 3-manifolds , 1985, Discret. Math..
[95] Johannes Thurigen,et al. Multi-critical behaviour of 4-dimensional tensor models up to order 6 , 2017, Nuclear Physics B.
[96] C. Gagliardi,et al. RIGID GEMS IN DIMENSION N , 2011, 1105.0507.
[97] B. Eynard,et al. Invariants of algebraic curves and topological expansion , 2007, math-ph/0702045.
[98] V. Rivasseau,et al. Intermediate Field Representation for Positive Matrix and Tensor Interactions , 2016, Annales Henri Poincaré.
[99] Gilles Schaeffer. Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .
[100] Gilles Schaeffer,et al. A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..
[101] Wenjie Fang,et al. Generating Functions of Bipartite Maps on Orientable Surfaces , 2015, Electron. J. Comb..
[102] F. David. CONFORMAL FIELD THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE , 1988 .
[103] P. Di Francesco,et al. 2D gravity and random matrices , 1993 .
[104] Sumit R. Das,et al. Three dimensional view of the SYK/AdS duality , 2017, 1704.07208.
[105] Gr'egory Miermont,et al. The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.
[106] Scaling functions for baby universes in two-dimensional quantum gravity , 1993, hep-th/9310098.
[107] V. Rivasseau,et al. Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps , 2015, 1502.01365.
[108] D. Gross,et al. A generalization of Sachdev-Ye-Kitaev , 2016, 1610.01569.
[109] C. Krishnan,et al. Quantum chaos and holographic tensor models , 2016, Journal of High Energy Physics.
[110] Jean-Franccois Marckert,et al. Invariance principles for random bipartite planar maps , 2005, math/0504110.
[111] S. Sheffield,et al. Liouville quantum gravity and the Brownian map III: the conformal structure is determined , 2016, Probability Theory and Related Fields.
[112] J. Bouttier,et al. Counting Colored Random Triangulations , 2002 .
[113] Scott Sheffield,et al. Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity. , 2009, Physical review letters.
[114] David Aldous,et al. The Continuum Random Tree III , 1991 .
[115] Philippe Di Francesco,et al. Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..
[116] J. Ryan,et al. Melons are Branched Polymers , 2013, 1302.4386.
[117] R. Gurău,et al. Invitation to Random Tensors , 2016, 1609.06439.
[118] V. Bonzom. Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d≥2 , 2016, 1603.03570.
[119] Luca Lionni,et al. Colored Triangulations of Arbitrary Dimensions are Stuffed Walsh Maps , 2017, Electron. J. Comb..
[120] W. T. Tutte,et al. A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.
[121] R. Gurau,et al. Phase transition in tensor models , 2015, 1504.05745.
[122] R. Gurau. The 1/N Expansion of Tensor Models Beyond Perturbation Theory , 2013, 1304.2666.
[123] M. Staudacher. The Yang-Lee edge singularity on a dynamical planar random surface , 1990 .
[124] R. Gurau. The ı ϵ prescription in the SYK model , 2017, 1705.08581.
[125] R. Gurau. Universality for Random Tensors , 2011, 1111.0519.
[126] Abdelkader Mokkadem,et al. Limit of normalized quadrangulations: The Brownian map , 2006 .
[127] Vladimir Kazakov,et al. Ising model on a dynamical planar random lattice: Exact solution , 1986 .
[128] Carlo Gagliardi,et al. A graph-theoretical representation of PL-manifolds — A survey on crystallizations , 1986 .
[129] S. Glashow. Partial Symmetries of Weak Interactions , 1961 .
[130] D. Gross,et al. The bulk dual of SYK: cubic couplings , 2017, 1702.08016.