Colored Discrete Spaces: Higher Dimensional Combinatorial Maps and Quantum Gravity

In two dimensions, the Euclidean Einstein-Hilbert action, which describes gravity in the absence of matter, can be discretized over random triangulations. In the physical limit of small Newton's constant, only planar triangulations survive. The limit in distribution of planar triangulations - the Brownian map - is a continuum fractal space which importance in the context of two-dimensional quantum gravity has been made more precise over the last years. It is interpreted as a quantum continuum space-time, obtained in the thermodynamical limit from a statistical ensemble of random discrete surfaces. The fractal properties of two-dimensional quantum gravity can therefore be studied from a discrete approach. It is well known that direct higher dimensional generalizations fail to produce appropriate quantum space-times in the continuum limit: the limit in distribution of dimension D>2 triangulations which survive in the limit of small Newton's constant is the continuous random tree, also called branched polymers in physics. However, while in two dimensions, discretizing the Einstein-Hilbert action over random 2p-angulations - discrete surfaces obtained by gluing 2p-gons together - leads to the same conclusions as for triangulations, this is not always the case in higher dimensions, as was discovered recently. Whether new continuum limit arise by considering discrete Einstein-Hilbert theories of more general random discrete spaces in dimension D remains an open question.We study discrete spaces obtained by gluing together elementary building blocks, such as polytopes with triangular facets. Such spaces generalize 2p-angulations in higher dimensions. In the physical limit of small Newton's constant, only discrete spaces which maximize the mean curvature survive. However, identifying them is a task far too difficult in the general case, for which quantities are estimated throughout numerical computations. In order to obtain analytical results, a coloring of (D-1)-cells has been introduced. In any even dimension, we can find families of colored discrete spaces of maximal mean curvature in the universality classes of trees - converging towards the continuous random tree, of planar maps - converging towards the Brownian map, or of proliferating baby universes. However, it is the simple structure of the corresponding building blocks which makes it possible to obtain these results: it is similar to that of one or two dimensional objects and does not render the rich diversity of colored building blocks in dimensions three and higher.This work therefore aims at providing combinatorial tools which would enable a systematic study of the building blocks and of the colored discrete spaces they generate. The main result of this thesis is the derivation of a bijection between colored discrete spaces and colored combinatorial maps, which preserves the information on the local curvature. It makes it possible to use results from combinatorial maps and paves the way to a systematical study of higher dimensional colored discrete spaces. As an application, a number of blocks of small sizes are analyzed, as well as a new infinite family of building blocks. The relation to random tensor models is detailed. Emphasis is given to finding the lowest bound on the number of (D-2)-cells, which is equivalent to determining the correct scaling for the corresponding tensor model. We explain how the bijection can be used to identify the graphs contributing at any given order of the 1/N expansion of the 2n-point functions of the colored SYK model, and apply this to the enumeration of generalized unicellular maps - discrete spaces obtained from a single building block - according to their mean curvature. For any choice of colored building blocks, we show how to rewrite the corresponding discrete Einstein-Hilbert theory as a random matrix model with partial traces, the so-called intermediate field representation.

[1]  Steven Weinberg,et al.  A Model of Leptons , 1967 .

[2]  Éric Fusy,et al.  Bijections for planar maps with boundaries , 2015, J. Comb. Theory, Ser. A.

[3]  Marc Noy,et al.  Graph classes with given 3‐connected components: Asymptotic enumeration and random graphs , 2009, Random Struct. Algorithms.

[4]  J. Maldacena,et al.  Supersymmetric Sachdev-Ye-Kitaev models , 2017 .

[5]  V. Bonzom New 1/N expansions in random tensor models , 2012, 1211.1657.

[6]  V. Rivasseau,et al.  Double scaling in tensor models with a quartic interaction , 2013, 1307.5281.

[7]  G. Schaeffer,et al.  Regular colored graphs of positive degree , 2013, 1307.5279.

[8]  Éric Fusy,et al.  A simple model of trees for unicellular maps , 2012, J. Comb. Theory A.

[9]  C. Peng,et al.  A supersymmetric SYK-like tensor model , 2016, Journal of High Energy Physics.

[10]  Olivier Bernardi,et al.  An analogue of the Harer-Zagier formula for unicellular maps on general surfaces , 2010, Adv. Appl. Math..

[11]  Edward A. Bender,et al.  The Number of Degree-Restricted Rooted Maps on the Sphere , 1994, SIAM J. Discret. Math..

[12]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[13]  Carlo Gagliardi,et al.  Extending the concept of genus to dimension $n$ , 1981 .

[14]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[15]  Sebastian Ehrlichmann,et al.  Quantum Geometry A Statistical Field Theory Approach , 2016 .

[16]  R. Gurău,et al.  Analyticity results for the cumulants in a random matrix model , 2014, 1409.1705.

[17]  S. Sheffield,et al.  Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric , 2015, 1507.00719.

[18]  I. Klebanov,et al.  Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models , 2016, 1611.08915.

[19]  M. R. Casali,et al.  G-degree for singular manifolds , 2017, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[20]  R. Gurau The 1/N Expansion of Colored Tensor Models , 2010, 1011.2726.

[21]  B. Eynard,et al.  Topological expansion for the 1-hermitian matrix model correlation functions , 2004 .

[22]  Ye,et al.  Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.

[23]  Éric Fusy,et al.  Unified bijections for maps with prescribed degrees and girth , 2011, J. Comb. Theory, Ser. A.

[24]  R. L. Stratonovich On a Method of Calculating Quantum Distribution Functions , 1957 .

[25]  Timothy R. S. Walsh,et al.  Hypermaps versus bipartite maps , 1975 .

[26]  Guillaume Chapuy,et al.  A bijection for covered maps, or a shortcut between Harer-Zagierʼs and Jacksonʼs formulas , 2011, J. Comb. Theory, Ser. A.

[27]  C. Krishnan,et al.  Random matrices and holographic tensor models , 2017, Journal of High Energy Physics.

[28]  V. Rivasseau,et al.  The Multiscale Loop Vertex Expansion , 2013, 1312.7226.

[29]  P. Narayan,et al.  SYK-like tensor models on the lattice , 2017, 1705.01554.

[30]  Adrian Tanasa,et al.  O(N) Random Tensor Models , 2015, 1512.06718.

[31]  C. Peng Vector models and generalized SYK models , 2017, 1704.04223.

[32]  Carlo Gagliardi,et al.  Regular imbeddings of edge-coloured graphs , 1981 .

[33]  M. Mulazzani,et al.  Compact 3-manifolds via 4-colored graphs , 2013, 1304.5070.

[34]  M. R. Casali,et al.  Topology in colored tensor models via crystallization theory , 2017, Journal of Geometry and Physics.

[35]  I. Klebanov,et al.  On large N limit of symmetric traceless tensor models , 2017, Journal of High Energy Physics.

[36]  E. Witten,et al.  More on supersymmetric and 2d analogs of the SYK model , 2017, Journal of High Energy Physics.

[37]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[38]  J. Ryan,et al.  Colored Tensor Models - a Review , 2011, 1109.4812.

[39]  Scott Sheffield,et al.  Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding , 2016, The Annals of Probability.

[40]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[41]  Valentin Bonzom,et al.  Critical behavior of colored tensor models in the large N limit , 2011, 1105.3122.

[42]  Edward A. Bender,et al.  The number of rooted maps on an orientable surface , 1991, J. Comb. Theory, Ser. B.

[43]  J. L. Gall,et al.  The topological structure of scaling limits of large planar maps , 2006, math/0607567.

[44]  Carlo Gagliardi,et al.  The only genus zero n-manifold is S^n , 1982 .

[45]  Anirvan M. Sengupta,et al.  NEW CRITICAL BEHAVIOR IN d = 0 LARGE-N MATRIX MODELS , 1990 .

[46]  V. Vargas,et al.  Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.

[47]  P. Cristofori Heegard and regular genus agree for compact 3-manifolds , 1998 .

[48]  C. Gagliardi On a class of 3-dimensional polyhedra , 1987, ANNALI DELL UNIVERSITA DI FERRARA.

[49]  Augusto Sagnotti,et al.  The ultraviolet behavior of Einstein gravity , 1986 .

[50]  A proposal for strings at D > 62; 1 , 1992, hep-th/9208026.

[51]  P. Francesco,et al.  Census of planar maps: From the one-matrix model solution to a combinatorial proof , 2002, cond-mat/0207682.

[52]  V. Rivasseau,et al.  The 1/N Expansion of Multi-Orientable Random Tensor Models , 2013, Annales Henri Poincaré.

[53]  P. Francesco Rectangular matrix models and combinatorics of colored graphs , 2002, cond-mat/0208037.

[54]  R. Gurau The complete 1/N expansion of a SYK–like tensor model , 2016, 1611.04032.

[55]  Carlo Gagliardi,et al.  Handles in Graphs and Sphere Bundles over S1 , 1987, Eur. J. Comb..

[56]  R. Gurau Quenched equals annealed at leading order in the colored SYK model , 2017, 1702.04228.

[57]  V. Rivasseau,et al.  Universality and Borel Summability of Arbitrary Quartic Tensor Models , 2014, 1403.0170.

[58]  E. Guitter,et al.  Coloring random triangulations , 1998 .

[59]  L. Lionni,et al.  Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders , 2017, 1702.06944.

[60]  M. Mulazzani,et al.  BLOBS AND FLIPS ON GEMS , 2006 .

[61]  Simplicial Quantum Gravity and Random Lattices , 1993, hep-th/9303127.

[62]  Valentin Bonzom,et al.  Random tensor models in the large N limit: Uncoloring the colored tensor models , 2012, 1202.3637.

[63]  J. F. Le Gall,et al.  Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere , 2006 .

[64]  M. Bousquet-M'elou Rational and algebraic series in combinatorial enumeration , 2008, 0805.0588.

[65]  H. Erbin,et al.  Conformality of 1/N corrections in Sachdev-Ye-Kitaev-like models , 2017, Physical Review D.

[66]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[67]  Junggi Yoon,et al.  Bi-local holography in the SYK model , 2016, 1603.06246.

[68]  Maciej Dolega,et al.  A bijection for rooted maps on general surfaces (extended abstract) , 2015 .

[69]  S. Dartois,et al.  Blobbed topological recursion for the quartic melonic tensor model , 2016, 1612.04624.

[70]  B. Eynard,et al.  An analysis of the intermediate field theory of T4 tensor model , 2014, 1409.5751.

[71]  E. Witten An SYK-like model without disorder , 2016, Journal of Physics A: Mathematical and Theoretical.

[72]  F. Ferrari The large $D$ limit of planar diagrams , 2017, Annales de l’Institut Henri Poincaré D.

[73]  Luca Lionni,et al.  Counting Gluings of Octahedra , 2016, Electron. J. Comb..

[74]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[75]  Guillaume Chapuy A new combinatorial identity for unicellular maps, via a direct bijective approach , 2011, Adv. Appl. Math..

[76]  Razvan Gurau,et al.  The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension , 2011, 1102.5759.

[77]  D. Benedetti,et al.  Symmetry breaking in tensor models , 2015, 1506.08542.

[78]  R. Gurau The 1/N Expansion of Tensor Models with Two Symmetric Tensors , 2017, Communications in Mathematical Physics.

[79]  V. Rivasseau,et al.  Note on the Intermediate Field Representation of ϕ2k$\phi ^{2k}$ Theory in Zero Dimension , 2016, Mathematical Physics, Analysis and Geometry.

[80]  C. Krishnan,et al.  Towards a finite-N hologram , 2017, 1706.05364.

[81]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[82]  M. Gross Tensor models and simplicial quantum gravity in >2-D , 1992 .

[83]  T. Regge General relativity without coordinates , 1961 .

[84]  J. Hubbard Calculation of Partition Functions , 1959 .

[85]  Naoki Sasakura,et al.  TENSOR MODEL FOR GRAVITY AND ORIENTABILITY OF MANIFOLD , 1991 .

[86]  V. Rivasseau Loop vertex expansion for higher-order interactions , 2017, 1702.07602.

[87]  G. Korchemsky MATRIX MODEL PERTURBED BY HIGHER ORDER CURVATURE TERMS , 1992 .

[88]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[89]  Guillaume Chapuy,et al.  Simple recurrence formulas to count maps on orientable surfaces , 2015, J. Comb. Theory, Ser. A.

[90]  Bergfinnur Durhuus,et al.  THREE-DIMENSIONAL SIMPLICIAL QUANTUM GRAVITY AND GENERALIZED MATRIX MODELS , 1991 .

[91]  J. Polchinski,et al.  The spectrum in the Sachdev-Ye-Kitaev model , 2016, 1601.06768.

[92]  Jean-Franccois Le Gall,et al.  Uniqueness and universality of the Brownian map , 2011, 1105.4842.

[93]  Olivier Bernardi,et al.  Unified bijections for planar hypermaps with general cycle-length constraints , 2014, Annales de l’Institut Henri Poincaré D.

[94]  Sóstenes Lins,et al.  Graph-encoded 3-manifolds , 1985, Discret. Math..

[95]  Johannes Thurigen,et al.  Multi-critical behaviour of 4-dimensional tensor models up to order 6 , 2017, Nuclear Physics B.

[96]  C. Gagliardi,et al.  RIGID GEMS IN DIMENSION N , 2011, 1105.0507.

[97]  B. Eynard,et al.  Invariants of algebraic curves and topological expansion , 2007, math-ph/0702045.

[98]  V. Rivasseau,et al.  Intermediate Field Representation for Positive Matrix and Tensor Interactions , 2016, Annales Henri Poincaré.

[99]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[100]  Gilles Schaeffer,et al.  A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..

[101]  Wenjie Fang,et al.  Generating Functions of Bipartite Maps on Orientable Surfaces , 2015, Electron. J. Comb..

[102]  F. David CONFORMAL FIELD THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE , 1988 .

[103]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[104]  Sumit R. Das,et al.  Three dimensional view of the SYK/AdS duality , 2017, 1704.07208.

[105]  Gr'egory Miermont,et al.  The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.

[106]  Scaling functions for baby universes in two-dimensional quantum gravity , 1993, hep-th/9310098.

[107]  V. Rivasseau,et al.  Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps , 2015, 1502.01365.

[108]  D. Gross,et al.  A generalization of Sachdev-Ye-Kitaev , 2016, 1610.01569.

[109]  C. Krishnan,et al.  Quantum chaos and holographic tensor models , 2016, Journal of High Energy Physics.

[110]  Jean-Franccois Marckert,et al.  Invariance principles for random bipartite planar maps , 2005, math/0504110.

[111]  S. Sheffield,et al.  Liouville quantum gravity and the Brownian map III: the conformal structure is determined , 2016, Probability Theory and Related Fields.

[112]  J. Bouttier,et al.  Counting Colored Random Triangulations , 2002 .

[113]  Scott Sheffield,et al.  Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity. , 2009, Physical review letters.

[114]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[115]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[116]  J. Ryan,et al.  Melons are Branched Polymers , 2013, 1302.4386.

[117]  R. Gurău,et al.  Invitation to Random Tensors , 2016, 1609.06439.

[118]  V. Bonzom Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d≥2 , 2016, 1603.03570.

[119]  Luca Lionni,et al.  Colored Triangulations of Arbitrary Dimensions are Stuffed Walsh Maps , 2017, Electron. J. Comb..

[120]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[121]  R. Gurau,et al.  Phase transition in tensor models , 2015, 1504.05745.

[122]  R. Gurau The 1/N Expansion of Tensor Models Beyond Perturbation Theory , 2013, 1304.2666.

[123]  M. Staudacher The Yang-Lee edge singularity on a dynamical planar random surface , 1990 .

[124]  R. Gurau The ı ϵ prescription in the SYK model , 2017, 1705.08581.

[125]  R. Gurau Universality for Random Tensors , 2011, 1111.0519.

[126]  Abdelkader Mokkadem,et al.  Limit of normalized quadrangulations: The Brownian map , 2006 .

[127]  Vladimir Kazakov,et al.  Ising model on a dynamical planar random lattice: Exact solution , 1986 .

[128]  Carlo Gagliardi,et al.  A graph-theoretical representation of PL-manifolds — A survey on crystallizations , 1986 .

[129]  S. Glashow Partial Symmetries of Weak Interactions , 1961 .

[130]  D. Gross,et al.  The bulk dual of SYK: cubic couplings , 2017, 1702.08016.