Second Gradient Electromagnetostatics: Electric Point Charge, Electrostatic and Magnetostatic Dipoles

In this paper, we study the theory of second gradient electromagnetostatics as the static version of second gradient electrodynamics. The theory of second gradient electrodynamics is a linear generalization of higher order of classical Maxwell electrodynamics whose Lagrangian is both Lorentz and U(1)-gauge invariant. Second gradient electromagnetostatics is a gradient field theory with up to second-order derivatives of the electromagnetic field strengths in the Lagrangian. Moreover, it possesses a weak nonlocality in space and gives a regularization based on higher-order partial differential equations. From the group theoretical point of view, in second gradient electromagnetostatics the (isotropic) constitutive relations involve an invariant scalar differential operator of fourth order in addition to scalar constitutive parameters. We investigate the classical static problems of an electric point charge, and electric and magnetic dipoles in the framework of second gradient electromagnetostatics, and we show that all the electromagnetic fields (potential, field strength, interaction energy, interaction force) are singularity-free unlike the corresponding solutions in the classical Maxwell electromagnetism as well as in the Bopp-Podolsky theory. The theory of second gradient electromagnetostatics delivers a singularity-free electromagnetic field theory with weak spatial nonlocality.

[1]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[2]  P. d’Avenia,et al.  Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: Solutions in the electrostatic case , 2018, Journal of Differential Equations.

[3]  B. Podolsky,et al.  Review of a Generalized Electrodynamics , 1948 .

[4]  M. Lazar,et al.  Conservation and Balance Laws in Linear Elasticity of Grade Three , 2009 .

[5]  R. Tucker,et al.  On the self-force in Bopp–Podolsky electrodynamics , 2015, 1502.01945.

[6]  C. Frahm Some novel delta‐function identities , 1983 .

[7]  V. S. Vladimirov,et al.  Equations of mathematical physics , 1972 .

[8]  Regularization using different surfaces and the second-order derivatives of 1/r , 2013 .

[9]  R. R. Cuzinatto,et al.  How can one probe Podolsky Electrodynamics , 2008, 0810.4106.

[10]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[11]  Path integral quantization of generalized quantum electrodynamics , 2010, 1008.3181.

[12]  M. Kiessling,et al.  The Einstein–Infeld–Hoffmann legacy in mathematical relativity I: The classical motion of charged point particles , 2019, International Journal of Modern Physics D.

[13]  Podolsky's higher-order electromagnetism from first principles , 1997 .

[14]  M. Kiessling SOME UNIQUENESS RESULTS FOR STATIONARY SOLUTIONS TO THE MAXWELL-BORN-INFELD FIELD EQUATIONS AND THEIR PHYSICAL CONSEQUENCES , 2011, 1107.2333.

[15]  R. Santos PLASMA-LIKE VACUUM IN PODOLSKY REGULARIZED CLASSICAL ELECTRODYNAMICS , 2011, 1103.0416.

[16]  A. Phillips The macmillan company. , 1970, Analytical chemistry.

[17]  B. Pimentel,et al.  Multipole expansion in generalized electrodynamics , 2016, International Journal of Modern Physics A.

[18]  L. J. Sluys,et al.  A classification of higher-order strain-gradient models – linear analysis , 2002 .

[19]  B. Podolsky A Generalized Electrodynamics Part I—Non-Quantum , 1942 .

[20]  P. Leung,et al.  On the singularities of the electrostatic and magnetostatic dipole fields , 2006 .

[21]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[22]  M. Lazar,et al.  The Green tensor of Mindlin’s anisotropic first strain gradient elasticity , 2019, Materials Theory.

[23]  Electrostatic and magnetostatic fields of point dipoles revisited , 2019, Revista Mexicana de Física E.

[24]  Regularization and distributional derivatives of (x12+x22+ . . . +xp2)–½n in R p , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  M. Kiessling,et al.  On the Schrödinger spectrum of a hydrogen atom with electrostatic Bopp–Landé–Thomas–Podolsky interaction between electron and proton , 2018, International Journal of Modern Physics A.

[26]  V. K. Kalpakides,et al.  On Material Equations in Second Gradient Electroelasticity , 2002 .

[27]  L. Infeld,et al.  Foundations of the New Field Theory , 1933, Nature.

[28]  F. Bopp Eine lineare Theorie des Elektrons , 1940 .

[29]  M. Lazar A non-singular continuum theory of point defects using gradient elasticity of bi-Helmholtz type , 2019, Philosophical Magazine.

[30]  A. Tagantsev,et al.  Piezoelectricity and flexoelectricity in crystalline dielectrics. , 1986, Physical review. B, Condensed matter.

[31]  A. Spencer Continuum Mechanics , 1967, Nature.

[32]  M. Lazar On gradient field theories: gradient magnetostatics and gradient elasticity , 2014, 1406.7781.

[33]  M. Lazar,et al.  Dislocations in second strain gradient elasticity , 2006 .

[34]  J. Kvasnica A possible estimate of the elementary length in electromagnetic interactions , 1960 .

[35]  C. Ji,et al.  Pauli–Villars regularization elucidated in Bopp–Podolsky’s generalized electrodynamics , 2019, The European Physical Journal C.

[36]  L. H. Thomas,et al.  Finite Self —Energies in Radiation Theory. Part II , 1941 .

[37]  P. Olver Equivalence, Invariants, and Symmetry: References , 1995 .

[38]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[39]  R. Kanwal Generalized Functions: Theory and Applications , 2004 .

[40]  Joshua Kiddy K. Asamoah,et al.  Fractal–fractional age-structure study of omicron SARS-CoV-2 variant transmission dynamics , 2022, Partial Differential Equations in Applied Mathematics.

[41]  H. Shodja,et al.  Calculation of the Additional Constants for fcc Materials in Second Strain Gradient Elasticity: Behavior of a Nano-Size Bernoulli-Euler Beam With Surface Effects , 2012 .

[42]  G. Uhlenbeck,et al.  On Field Theories with Non-Localized Action , 1950 .

[43]  H. Shodja,et al.  Ab initio calculations of characteristic lengths of crystalline materials in first strain gradient elasticity , 2013 .

[44]  N. Ortner,et al.  Fundamental Solutions of Linear Partial Differential Operators , 2015 .

[45]  B. Pimentel,et al.  Renormalizability of generalized quantum electrodynamics , 2012, 1212.3542.

[46]  G. Po,et al.  The atomistic representation of first strain-gradient elastic tensors , 2016, 1608.00637.

[47]  M. Lazar Green functions and propagation in the Bopp–Podolsky electrodynamics , 2019, Wave Motion.

[48]  G. Barton Elements of Green's Functions and Propagation: Potentials, Diffusion, and Waves , 1989 .

[49]  V. Hnizdo Generalized second-order partial derivatives of 1/r , 2010, 1009.2480.

[50]  B. Pimentel,et al.  The canonical structure of Podolsky generalized electrodynamics , 1988 .

[51]  G. Marques,et al.  Complex masses and acausal propagation in field theory , 1972 .

[52]  M. Lazar Second gradient electrodynamics: Green functions, wave propagation, regularization and self-force , 2020, 2005.05317.

[53]  A. E. Zayats Self-interaction in the Bopp-Podolsky electrodynamics: Can the observable mass of a charged particle depend on its acceleration? , 2013, 1306.3966.

[54]  Norbert Ortner,et al.  Regularisierte Faltung von Distributionen. Teil 2: Eine Tabelle von Fundamentallösungen , 1980 .