Partial 3‐D Correspondence from Shape Extremities

We present a 3‐D correspondence method to match the geometric extremities of two shapes which are partially isometric. We consider the most general setting of the isometric partial shape correspondence problem, in which shapes to be matched may have multiple common parts at arbitrary scales as well as parts that are not similar. Our rank‐and‐vote‐and‐combine algorithm identifies and ranks potentially correct matches by exploring the space of all possible partial maps between coarsely sampled extremities. The qualified top‐ranked matchings are then subjected to a more detailed analysis at a denser resolution and assigned with confidence values that accumulate into a vote matrix. A minimum weight perfect matching algorithm is finally iterated to combine the accumulated votes into an optimal (partial) mapping between shape extremities, which can further be extended to a denser map. We test the performance of our method on several data sets and benchmarks in comparison with state of the art.

[1]  Alla Sheffer,et al.  Model Composition from Interchangeable Components , 2007 .

[2]  Thomas A. Funkhouser,et al.  Partial matching of 3D shapes with priority-driven search , 2006, SGP '06.

[3]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[4]  Ghassan Hamarneh,et al.  Bilateral Maps for Partial Matching , 2013, Comput. Graph. Forum.

[5]  Radu Horaud,et al.  SHREC '11: Robust Feature Detection and Description Benchmark , 2011, 3DOR@Eurographics.

[6]  Leonidas J. Guibas,et al.  Map-based exploration of intrinsic shape differences and variability , 2013, ACM Trans. Graph..

[7]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[8]  Alexander M. Bronstein,et al.  A Correspondence-Less Approach to Matching of Deformable Shapes , 2011, SSVM.

[9]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[10]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[11]  I. Daubechies,et al.  Continuous Procrustes Distance Between Two Surfaces , 2011, 1106.4588.

[12]  Yizhou Yu Laplacian Guided Editing, Synthesis, and Simulation , 2007 .

[13]  Alla Sheffer,et al.  Model Composition from Interchangeable Components , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[14]  Radu Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, CVPR.

[15]  Tamal K. Dey,et al.  Persistent Heat Signature for Pose‐oblivious Matching of Incomplete Models , 2010, Comput. Graph. Forum.

[16]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[17]  Yücel Yemez,et al.  Minimum-Distortion Isometric Shape Correspondence Using EM Algorithm , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Daniel Cohen-Or,et al.  Electors Voting for Fast Automatic Shape Correspondence , 2010, Comput. Graph. Forum.

[19]  Vladimir G. Kim,et al.  Möbius Transformations For Global Intrinsic Symmetry Analysis , 2010, Comput. Graph. Forum.

[20]  H. Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Nikos Paragios,et al.  Dense non-rigid surface registration using high-order graph matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Hans-Peter Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, CVPR.

[24]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[25]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[26]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[27]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[28]  Tobias Gurdan Sparse Modeling of Intrinsic Correspondences , 2014 .

[29]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[30]  Yücel Yemez,et al.  Coarse‐to‐Fine Isometric Shape Correspondence by Tracking Symmetric Flips , 2013, Comput. Graph. Forum.

[31]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[32]  Yücel Yemez,et al.  Scale Normalization for Isometric Shape Matching , 2012, Comput. Graph. Forum.

[33]  Yücel Yemez,et al.  Eurographics Symposium on Geometry Processing 2011 Coarse-to-fine Combinatorial Matching for Dense Isometric Shape Correspondence , 2022 .

[34]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[35]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Nikos Paragios,et al.  Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching , 2011, SSVM.

[38]  Edwin R. Hancock,et al.  Spectral correspondence for point pattern matching , 2003, Pattern Recognit..

[39]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[40]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .