Costas arrays, Golomb rulers and wavelength isolation sequence pairs

This thesis studies two combinatorial objects arising from applications in digital information processing. We firstly consider “wavelength isolation sequence pairs” (WISPs), a type of binary sequence pair introduced by Golay in 1951 but largely neglected since. Two previously overlooked examples of such sequence pairs are presented. We construct all known examples of WISPs from perfect Golomb rulers, and give partial classification results. We secondly consider Costas arrays, a generalisation of Golomb rulers dating from 1965. We examine whether a Costas array can contain every possible toroidal distance vector; contrary to claims elsewhere, this is still an open question. We constrain the (non-toroidal) distance vectors in Costas arrays by introducing “mirror pairs”. Structural properties of all Costas arrays are established via the number and type of their mirror pairs, with stronger results for G-symmetric Costas arrays, Welch Costas arrays and Golomb Costas arrays.

[1]  Interlaced Costas Arrays Do Not Exist , 2008 .

[3]  Verónica Requena,et al.  On the Nonlinearity of Exponential Welch Costas Functions , 2010, IEEE Transactions on Information Theory.

[4]  S. Rickard,et al.  The Enumeration of Costas Arrays of Size 26 , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[5]  O. Moreno,et al.  On periodicity properties of Costas arrays and a conjecture on permutation polynomials , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[6]  Gary McGuire,et al.  On the Security of Blockwise Secure Modes of Operation Beyond the Birthday Bound , 2010 .

[7]  T. Etzion,et al.  Combinatorial designs derived from Costas arrays , 1990 .

[8]  O. Moreno,et al.  New Enumeration Results for Costas Arrays , 1993, Proceedings. IEEE International Symposium on Information Theory.

[9]  Michal Adamaszek Efficient enumeration of graceful permutations , 2006 .

[10]  Jorge Urrutia,et al.  Integer Sets with Distinct Sums and Differences and Carrier Frequency Assignments for Nonlinear Repeaters , 1986, IEEE Trans. Commun..

[11]  Francesco Iorio,et al.  The enumeration of Costas arrays of order 28 , 2010, ITW.

[12]  Solomon W. Golomb,et al.  Two-dimensional synchronization patterns for minimum ambiguity , 1982, IEEE Trans. Inf. Theory.

[13]  Francesco Iorio,et al.  Results of the Enumeration of Costas Arrays of Order $27$ , 2008, IEEE Transactions on Information Theory.

[14]  Solomon W. Golomb,et al.  Algebraic Constructions for Costas Arrays , 1984, J. Comb. Theory, Ser. A.

[15]  Weita Chang A remark on the definition of Costas arrays , 1987, Proceedings of the IEEE.

[16]  Konstantinos Drakakis,et al.  Open problems in Costas arrays , 2011, ArXiv.

[17]  Scott Rickard Searching for Costas arrays using periodicity properties , .

[18]  Robert E. L. Aldred,et al.  A note on the number of graceful labellings of paths , 2003, Discret. Math..

[19]  Richard J. Turyn,et al.  Hadamard Matrices, Baumert-Hall Units, Four-Symbol Sequences, Pulse Compression, and Surface Wave Encodings , 1974, J. Comb. Theory A.

[20]  W. C. Babcock Intermodulation interference in radio systems frequency of occurrence and control by channel selection , 1953 .

[22]  N. Levanon,et al.  Any two N × N costas signals must have at least one common ambiguity sidelobe if N > 3—A proof , 1985, Proceedings of the IEEE.

[23]  S. Golomb,et al.  Constructions and properties of Costas arrays , 1984, Proceedings of the IEEE.

[24]  J.K. Beard,et al.  Costas array generation and search methodology , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[25]  M. Golay Static multislit spectrometry and its application to the panoramic display of infrared spectra. , 1951, Journal of the Optical Society of America.

[26]  Gary L. Mullen,et al.  Primitive elements in finite fields and costas arrays , 2005, Applicable Algebra in Engineering, Communication and Computing.

[27]  Kenneth W. Busch,et al.  Multielement Detection Systems for Spectrochemical Analysis , 1990 .

[28]  Scott T. Rickard,et al.  On the Complexity of the Verification of the Costas Property , 2009, Proceedings of the IEEE.

[29]  Francesco Iorio,et al.  Results of the Enumeration of Costas Arrays of Order 27 , 2008, IEEE Trans. Inf. Theory.

[30]  J.P. Costas,et al.  A study of a class of detection waveforms having nearly ideal range—Doppler ambiguity properties , 1983, Proceedings of the IEEE.

[31]  Scott T. Rickard,et al.  Common distance vectors between Costas arrays , 2009, Adv. Math. Commun..

[32]  K. Drakakis,et al.  A review of Costas arrays , 2006 .

[33]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[34]  William T. Rankin,et al.  Optimal Golomb Rulers: An Exhaustive Parallel Search Implementation , 1993 .

[35]  Michael J. Ganley,et al.  Direct Product Difference Sets , 1977, J. Comb. Theory, Ser. A.

[36]  Matthew G. Parker,et al.  A multi-dimensional approach to the construction and enumeration of Golay complementary sequences , 2008, J. Comb. Theory, Ser. A.

[37]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..