Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood

[1]  D. Seidel,et al.  Saprochaete clavata Invasive Infections – A New Threat to Hematological-Oncological Patients , 2019, Front. Microbiol..

[2]  H. Nakano,et al.  Ultraviolet-C resistance of selected spoilage yeasts in orange juice. , 2019, Food microbiology.

[3]  Moriya Ohkuma,et al.  Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum , 2018, Cell.

[4]  J. Marín-Navarro,et al.  Cellobiose fermentation by Saccharomyces cerevisiae: Comparative analysis of intra versus extracellular sugar hydrolysis , 2018, Process Biochemistry.

[5]  C. Rosa,et al.  Characterisation of the diversity and physiology of cellobiose-fermenting yeasts isolated from rotting wood in Brazilian ecosystems. , 2018, Fungal biology.

[6]  C. Rosa,et al.  The yeasts of the genus Spathaspora: potential candidates for second‐generation biofuel production , 2018, Yeast.

[7]  V. Gupta,et al.  Applications of fungal cellulases in biofuel production: Advances and limitations , 2018 .

[8]  D. de Oliveira,et al.  Second-generation ethanol from non-detoxified sugarcane hydrolysate by a rotting wood isolated yeast strain. , 2017, Bioresource technology.

[9]  J. Keasling,et al.  Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. , 2017, Bioresource technology.

[10]  O. Gascuel,et al.  SMS: Smart Model Selection in PhyML , 2017, Molecular biology and evolution.

[11]  N. Čadež,et al.  Brettanomyces acidodurans sp. nov., a new acetic acid producing yeast species from olive oil , 2017, Antonie van Leeuwenhoek.

[12]  H. Poggi‐Varaldo,et al.  Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose , 2017, Archives of Microbiology.

[13]  Jan P. Meier-Kolthoff,et al.  Comparative genomics of biotechnologically important yeasts , 2016, Proceedings of the National Academy of Sciences.

[14]  S. Džeroski,et al.  Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances , 2016 .

[15]  Z. L. Liu,et al.  Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast , 2016, PloS one.

[16]  A. K. Gombert,et al.  Sucrose and Saccharomyces cerevisiae: a relationship most sweet. , 2016, FEMS yeast research.

[17]  Sophie Duquesne,et al.  Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes , 2015, Biotechnology for Biofuels.

[18]  Y. Li,et al.  Molecular Phylogeny and Taxonomy of Yamadazyma dushanensis f.a., sp. nov., a Cellobiose-Fermenting Yeast Species from China , 2015, Current Microbiology.

[19]  S. Limtong,et al.  The diversity of culturable yeasts in the phylloplane of rice in Thailand , 2015, Annals of Microbiology.

[20]  R. Vadkertiová,et al.  Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees , 2014, Journal of basic microbiology.

[21]  J. Thevelein,et al.  Expression of Saccharomyces cerevisiae α-glucoside transporters under different growth conditions , 2014 .

[22]  P. Paiva,et al.  Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial Dekkera/Brettanomyces bruxellensis strain , 2014, SpringerPlus.

[23]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[24]  C. Kurtzman,et al.  Alloascoidea hylecoeti gen. nov., comb. nov., Alloascoidea africana comb. nov., Ascoidea tarda sp. nov., and Nadsonia starkeyi-henricii comb. nov., new members of the Saccharomycotina (Ascomycota). , 2013, FEMS Yeast Research.

[25]  A. Prabhune,et al.  Evaluation of ethanol production by a new isolate of yeast during fermentation in synthetic medium and sugarcane bagasse hemicellulosic hydrolysate , 2013, Annals of Microbiology.

[26]  Q. Shen,et al.  Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33 , 2012, Microbial Cell Factories.

[27]  E. Gomes,et al.  A novel β-glucosidase from Sporidiobolus pararoseus: characterization and application in winemaking. , 2011, Journal of food science.

[28]  A. Urbani,et al.  MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi. , 2011, Molecular bioSystems.

[29]  C. Rosa,et al.  Candida queiroziae sp. nov., a cellobiose-fermenting yeast species isolated from rotting wood in Atlantic Rain Forest , 2011, Antonie van Leeuwenhoek.

[30]  A. Briones Pérez,et al.  Extracellular beta-glucosidase production by the yeast Debaryomyces pseudopolymorphus UCLM-NS7A: optimization using response surface methodology. , 2010, New biotechnology.

[31]  G. Sherlock,et al.  Microarray karyotyping of maltose‐fermenting Saccharomyces yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization , 2010, Journal of applied microbiology.

[32]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[33]  J. Claverie,et al.  BLAST-EXPLORER helps you building datasets for phylogenetic analysis , 2010, BMC Evolutionary Biology.

[34]  C. Rosa,et al.  Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. , 2009, FEMS yeast research.

[35]  C. Rosa,et al.  Wickerhamomyces queroliae sp. nov. and Candida jalapaonensis sp. nov., two yeast species isolated from Cerrado ecosystem in North Brazil. , 2009, International journal of systematic and evolutionary microbiology.

[36]  Jean-Michel Claverie,et al.  Phylogeny.fr: robust phylogenetic analysis for the non-specialist , 2008, Nucleic Acids Res..

[37]  S. Alves,et al.  Molecular Analysis of Maltotriose Active Transport and Fermentation by Saccharomyces cerevisiae Reveals a Determinant Role for the AGT1 Permease , 2008, Applied and Environmental Microbiology.

[38]  B. Stambuk,et al.  Maltose and Maltotriose Active Transport and Fermentation by Saccharomyces Cerevisiaes1 , 2007 .

[39]  M. A. Villena,et al.  Characterization of an exocellular β-glucosidase from Debaryomyces pseudopolymorphus , 2006 .

[40]  G. Santangelo,et al.  Glucose Signaling in Saccharomyces cerevisiae , 2006, Microbiology and Molecular Biology Reviews.

[41]  S. Suh,et al.  Three new asexual arthroconidial yeasts, Geotrichum carabidarum sp. nov., Geotrichum histeridarum sp. nov., and Geotrichum cucujoidarum sp. nov., isolated from the gut of insects. , 2006, Mycological research.

[42]  W. V. van Zyl,et al.  Role of cultivation media in the development of yeast strains for large scale industrial use , 2005, Microbial cell factories.

[43]  B. Stambuk,et al.  Sucrose Fermentation by Saccharomyces cerevisiae Lacking Hexose Transport , 2005, Journal of Molecular Microbiology and Biotechnology.

[44]  L. Jespersen,et al.  Yeast involved in fermentation of Coffea arabica in East Africa determined by genotyping and by direct denaturating gradient gel electrophoresis , 2004, Yeast.

[45]  Saroj K. Mishra,et al.  Purification and characterization of two beta-glucosidases from a thermo-tolerant yeast Pichia etchellsii. , 2003, Biochimica et biophysica acta.

[46]  B. Stambuk,et al.  Colorimetric determination of active α-glucoside transport in Saccharomyces cerevisiae , 2001 .

[47]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[48]  B. Stambuk A simple experiment illustrating metabolic regulation: Induction versus repression of yeast α‐glucosidase , 1999 .

[49]  K. Lopandić,et al.  Phenotypic and genotypic identification of yeasts from cheese , 1999, Antonie van Leeuwenhoek.

[50]  J. Barker,et al.  Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. , 1999, Canadian journal of microbiology.

[51]  J. Gancedo Yeast Carbon Catabolite Repression , 1998, Microbiology and Molecular Biology Reviews.

[52]  C. Kurtzman,et al.  Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences , 1998, Antonie van Leeuwenhoek.

[53]  B. Saha,et al.  Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata , 1996, Applied and environmental microbiology.

[54]  E. Carvajal,et al.  Assay for in vivo yeast invertase activity using NaF. , 1996, Analytical biochemistry.

[55]  F. Barbosa,et al.  Yeast diversity in a mesotrophic lake on the karstic plateau of Lagoa Santa, MG-Brazil , 1995, Hydrobiologia.

[56]  K. Takegawa,et al.  The presence of trehalose-containing oligosaccharides in yeast extract. , 1993, Bioscience, biotechnology, and biochemistry.

[57]  R. Lagunas,et al.  Sugar transport in Saccharomyces cerevisiae. , 1993, FEMS microbiology reviews.

[58]  D. Burk,et al.  The Determination of Enzyme Dissociation Constants , 1934 .

[59]  S. Alves,et al.  Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. , 2019, Advances in applied microbiology.

[60]  C. Rosa,et al.  The diversity and antifungal susceptibility of the yeasts isolated from coconut water and reconstituted fruit juices in Brazil. , 2013, International journal of food microbiology.

[61]  C. Kurtzman,et al.  Methods for isolation, phenotypic characterization and maintenance of yeasts , 2011 .

[62]  C. Kurtzman,et al.  Cephaloascus Hanawa (1920) , 2011 .

[63]  G. S. Hoog,et al.  Galactomyces Redhead & Malloch , 1998 .

[64]  H. J. Phaff,et al.  39 – Metschnikowia Kamienski , 1998 .

[65]  D. Reynolds,et al.  The fungal holomorph : mitotic, meiotic and pleomorphic speciation in fungal systematics : proceedings of an International Symposium, Newport, Oregon, 4-7 August, 1992 , 1993 .

[66]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[67]  K. Komagata,et al.  CANDIDA PSEUDOINTERMEDIA SP. NOV., ISOLATED FROM "KAMABOKO, " A TRADITIONAL FISH-PASTE PRODUCT IN JAPAN , 1976 .