Using para hydrogen induced polarization to study steps in the hydroformylation reaction.

A range of iridium complexes, Ir(η3-C3H5)(CO)(PR2R')2 (1a-1e) [where 1a, PR2R' = PPh3, 1b P(p-tol)3, 1c PMePh2, 1d PMe2Ph and 1e PMe3] were synthesized and their reactivity as stoichiometric hydroformylation precursors studied. Para-hydrogen assisted NMR spectroscopy detected the following intermediates: Ir(H)2(η3-C3H5)(CO)(PR2R') (2a-e), Ir(H)2(η1-C3H5)(CO)(PR2R')2 (4d-e), Ir(H)2(η1-C3H5)(CO)2(PR2R') (10a-e), Ir(H)2(CO-C3H5)(CO)2(PR2R') (11a-c), Ir(H)2(CO-C3H7)(CO)2(PR2R') (12a-c) and Ir(H)2(CO-C3H5)(CO)(PR2R')2 (13d-e). Some of these species exist as two geometric isomers according to their multinuclear NMR characteristics. The NMR studies suggest a role for the following 16 electron species in these reactions: Ir(η3-C3H5)(CO)(PR2R'), Ir(η1-C3H5)(CO)(PR2R')2, Ir(η1-C3H5)(CO)2(PR2R'), Ir(CO-C3H5)(CO)2(PR2R'), Ir(CO-C3H7)(CO)2(PR2R') and Ir(CO-C3H5)(CO)(PR2R')2. Their role is linked to several 18 electron species in order to confirm the route by which hydroformylation and hydrogenation proceeds.

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  T. Repo,et al.  Nuclear spin hyperpolarization with ansa-aminoboranes: a metal-free perspective for parahydrogen-induced polarization. , 2016, Physical chemistry chemical physics : PCCP.

[3]  L. Bouchard,et al.  Surface ligand-directed pair-wise hydrogenation for heterogeneous phase hyperpolarization. , 2016, Chemical communications.

[4]  Luca Weisz,et al.  Rhodium Catalyzed Hydroformylation , 2016 .

[5]  C. Landis,et al.  Interception and characterization of catalyst species in rhodium bis(diazaphospholane)-catalyzed hydroformylation of octene, vinyl acetate, allyl cyanide, and 1-phenyl-1,3-butadiene. , 2015, Journal of the American Chemical Society.

[6]  G. A. Bukhtiyarova,et al.  A Mechanistic Study of Thiophene Hydrodesulfurization by the Parahydrogen‐Induced Polarization Technique , 2015 .

[7]  C. Ghio,et al.  Rhodium-catalyzed hydroformylation of ketal-masked β-isophorone: computational explanation for the unexpected reaction evolution of the tertiary Rh-alkyl via an exocyclic β-elimination derivative. , 2015, The journal of physical chemistry. A.

[8]  T. Kégl Computational aspects of hydroformylation , 2015 .

[9]  Eszter Baráth,et al.  Rhodium-Catalyzed Hydroformylation of 1,3-Butadiene to Adipic Aldehyde: Revealing Selectivity and Rate-Determining Steps , 2015 .

[10]  A. Börner,et al.  Production of alcohols via hydroformylation , 2015 .

[11]  T. Koslowski,et al.  Full kinetic analysis of a rhodium-catalyzed hydroformylation: beyond the rate-limiting step picture , 2015 .

[12]  P. Deglmann,et al.  Density Functional Investigations of the Rh-Catalyzed Hydroformylation of 1,3-Butadiene with Bisphosphite Ligands , 2014 .

[13]  C. A. Russell,et al.  Hydrogen activation by an aromatic triphosphabenzene. , 2014, Journal of the American Chemical Society.

[14]  J. Harvey,et al.  Computational kinetics of cobalt-catalyzed alkene hydroformylation. , 2014, Angewandte Chemie.

[15]  Jin-Xun Liu,et al.  Co-Co2C and Co-Co2C/AC Catalysts for Hydroformylation of 1-Hexene under Low Pressure: Experimental and Theoretical Studies , 2014 .

[16]  M. Halse,et al.  Photochemical pump and NMR probe: chemically created NMR coherence on a microsecond time scale. , 2014, Journal of the American Chemical Society.

[17]  F. Rominger,et al.  Iridium Models of Rhodium Intermediates in Hydroformylation Catalysis: Isolation and Molecular Structures of Fluxional ae and ee Isomers , 2014 .

[18]  K. Neymeyr,et al.  Investigation into the Equilibrium of Iridium Catalysts for the Hydroformylation of Olefins by Combining In Situ High-Pressure FTIR and NMR Spectroscopy , 2014 .

[19]  J. Bernarding,et al.  Synthesis, solid-state NMR characterization, and application for hydrogenation reactions of a novel Wilkinson's-type immobilized catalyst. , 2014, Chemistry.

[20]  M. Leskelä,et al.  Tweezers for parahydrogen: a metal-free probe of nonequilibrium nuclear spin states of H₂ molecules. , 2014, Journal of the American Chemical Society.

[21]  J. Reek,et al.  Exchanging conformations of a hydroformylation catalyst structurally characterized using two-dimensional vibrational spectroscopy. , 2013, Inorganic chemistry.

[22]  S. Appelt,et al.  Para-hydrogen perspectives in hyperpolarized NMR. , 2013, Journal of magnetic resonance.

[23]  C. Landis,et al.  Interception and characterization of alkyl and acyl complexes in rhodium-catalyzed hydroformylation of styrene. , 2013, Journal of the American Chemical Society.

[24]  K. Dyballa,et al.  From olefins to alcohols: efficient and regioselective ruthenium-catalyzed domino hydroformylation/reduction sequence. , 2013, Angewandte Chemie.

[25]  R. Franke,et al.  Alternative metals for homogeneous catalyzed hydroformylation reactions. , 2013, Angewandte Chemie.

[26]  P. V. Leeuwen,et al.  Strong π-Acceptor Ligands in Rhodium-Catalyzed Hydroformylation of Ethene and 1-Octene: Operando Catalysis , 2013 .

[27]  H. Adams,et al.  Ligand Effects on Reactivity of Cobalt Acyl Complexes , 2012 .

[28]  P. V. Leeuwen,et al.  Operando Spectroscopy in Catalytic Carbonylation Reactions , 2012 .

[29]  K. Krogh-Jespersen,et al.  Olefin isomerization by iridium pincer catalysts. Experimental evidence for an η3-allyl pathway and an unconventional mechanism predicted by DFT calculations. , 2012, Journal of the American Chemical Society.

[30]  I. Koptyug,et al.  Heterogeneous addition of H2 to double and triple bonds over supported Pd catalysts: a parahydrogen-induced polarization technique study. , 2012, Physical chemistry chemical physics : PCCP.

[31]  S. Duckett,et al.  Application of parahydrogen induced polarization techniques in NMR spectroscopy and imaging. , 2012, Accounts of chemical research.

[32]  S. Duckett,et al.  The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. , 2012, Progress in nuclear magnetic resonance spectroscopy.

[33]  Satoshi Maeda,et al.  Toward Predicting Full Catalytic Cycle Using Automatic Reaction Path Search Method: A Case Study on HCo(CO)3-Catalyzed Hydroformylation. , 2012, Journal of chemical theory and computation.

[34]  A. Börner,et al.  Applied hydroformylation. , 2012, Chemical reviews.

[35]  D. Hess,et al.  Operando Infrared Spectroscopic and Quantum-chemical Studies on Iridium-catalyzed Hydroformylation , 2012 .

[36]  S. Otto,et al.  Evaluation of ligand effects in the modified cobalt hydroformylation of 1-octene. Crystal structures of [Co(L)(CO)3]2 (L = PA-C5, PCy3 and PCyp3). , 2011, Dalton transactions.

[37]  R. Franke,et al.  A general and efficient iridium-catalyzed hydroformylation of olefins. , 2011, Angewandte Chemie.

[38]  D. Plattner,et al.  Online Monitoring of Hydroformylation Intermediates by ESI-MS , 2010 .

[39]  P. Kalck,et al.  Cobalt-catalyzed hydroformylation of alkenes: generation and recycling of the carbonyl species, and catalytic cycle. , 2009, Chemical reviews.

[40]  R. Luque,et al.  Para-hydrogen induced polarisation effects in liquid phase hydrogenations catalysed by supported metal nanoparticles. , 2009, Dalton transactions.

[41]  A. Whitwood,et al.  An NMR study of cobalt-catalyzed hydroformylation using para-hydrogen induced polarisation. , 2009, Dalton transactions.

[42]  F. Cortés‐Guzmán,et al.  Structural evolution: mechanism of olefin insertion in hydroformylation reaction. , 2008, The journal of physical chemistry. A.

[43]  A. Sivaramakrishna,et al.  Synthesis and structural aspects of M-allyl (M = Ir, Rh) complexes , 2007 .

[44]  A. Whitwood,et al.  A para-hydrogen investigation of palladium-catalyzed alkyne hydrogenation. , 2007, Journal of the American Chemical Society.

[45]  A. Pines,et al.  para-Hydrogen-induced polarization in heterogeneous hydrogenation reactions. , 2007, Journal of the American Chemical Society.

[46]  J. Schneider,et al.  A model iridium hydroformylation system with the large bite angle ligand xantphos: reactivity with parahydrogen and implications for hydroformylation catalysis. , 2006, Inorganic chemistry.

[47]  A. Whitwood,et al.  Detection of intermediates in cobalt-catalyzed hydroformylation using para-hydrogen-induced polarization. , 2005, Journal of the American Chemical Society.

[48]  M. Datt,et al.  Recent advances in high-pressure infrared and NMR techniques for the determination of catalytically active species in rhodium- and cobalt-catalysed hydroformylation reactions , 2004 .

[49]  A. Whitwood,et al.  New perspectives in hydroformylation: a para-hydrogen study. , 2004, Chemical communications.

[50]  R. Tannenbaum,et al.  Isotope effects in the hydroformylation of olefins with cobalt carbonyls as catalysts , 2004 .

[51]  K. Kramarz,et al.  In Situ High-Pressure NMR Studies of Co2(CO)6[P(p-CF3C6H4)3]2 in Supercritical Carbon Dioxide: Ligand Substitution, Hydrogenation, and Hydroformylation Reactions† , 2004 .

[52]  J. Coetzee,et al.  Hydroformylation studies using high pressure NMR spectroscopy , 2004 .

[53]  M. Beller,et al.  Acetylene Hydroformylation with HCo-(CO)~3 as Catalyst. A Density Functional Study , 2004 .

[54]  Haijun Jiao,et al.  HCo(CO)3-Catalyzed Propene Hydroformylation. Insight into Detailed Mechanism , 2003 .

[55]  P. V. Leeuwen,et al.  Bite angle effects in diphosphine metal catalysts: steric or electronic?Based on the presentation given at Dalton Discussion No. 5, 10?12th April 2003, Noordwijkerhout, The Netherlands. , 2003 .

[56]  T. Pakkanen,et al.  Promoted iridium complexes as catalysts in hydroformylation of 1-hexene , 2003 .

[57]  S. Massick,et al.  Activation parameters for the reactive intermediates relevant to carbonylation catalysts based on cobalt carbonyls. , 2003, Inorganic Chemistry.

[58]  R. Eisenberg,et al.  One-hydrogen polarization in hydroformylation promoted by platinum-tin and iridium carbonyl complexes: a new type of parahydrogen-induced effect. , 2002, Journal of the American Chemical Society.

[59]  T. Cundari,et al.  A quantum mechanics/molecular mechanics study of the steric influence of the PR3 spectator ligands on the energetics of ethylene insertion into the Rh–H bond of HRh(PR3)2(CO)(η2-CH2CH2) , 2002 .

[60]  C. Claver,et al.  In situ study of diphosphine rhodium systems in asymmetric hydroformylation of styrene , 2001 .

[61]  S. Bernhard,et al.  Time-Resolved Infrared Spectroscopic Study of Reactive Acyl Intermediates Relevant to Cobalt-Catalyzed Carbonylations1 , 2000 .

[62]  Jun‐Chul Choi,et al.  π-Allyliridium(I) complexes, Ir(η 3 -CH 2 CHCHAr)(CO)(PPh 3 ) 2 (Ar=Ph, C 6 H 4 Me- p , C 6 H 4 Br- p ). Comparison of their structures and chemical properties with analogous Rh complexes , 2000 .

[63]  F. Vizza,et al.  In Situ High-Pressure 31P{1H} NMR Studies of the Hydroformylation of 1-Hexene by RhH(CO)(PPh3)3 , 2000 .

[64]  B. Scott,et al.  Chemistry of M(allyl)3 (M = Rh, Ir) compounds: structural characterization of tris(allyl)iridium complexes with phosphorus ligands , 2000 .

[65]  L. Field,et al.  A high-yield synthetic approach to trans-[Ir(ER3)2(CO)X] (ER3=PMe3, PEt3, PPhMe2, PPh2Me, P(OMe)3, AsMe3, AsEt3, AsPh3, SbPh3; X=Cl, Br) , 1999 .

[66]  C. Claver,et al.  High-Pressure Infrared Studies of Rhodium Complexes Containing Thiolate Bridge Ligands under Hydroformylation Conditions , 1999 .

[67]  K. Goubitz,et al.  Electronic Effect on Rhodium Diphosphine Catalyzed Hydroformylation: The Bite Angle Effect Reconsidered , 1998 .

[68]  Purwanto,et al.  Kinetics of Hydroformylation of 1-Octene Using [Rh(COD)Cl]2−TPPTS Complex Catalyst in a Two-Phase System in the Presence of a Cosolvent , 1996 .

[69]  J. Bargon,et al.  Hetero-NMR Enhancement via Parahydrogen Labeling , 1995 .

[70]  S. Duckett,et al.  Dalton communications. Rapid characterisation of rhodium dihydrides by nuclear magnetic resonance spectroscopy using indirect two-dimensional methods and para-hydrogen , 1995 .

[71]  S. Duckett,et al.  Observation of New Intermediates in Hydrogenation Catalyzed by Wilkinson's Catalyst, RhCl(PPh3)3, Using Parahydrogen-Induced Polarization , 1994 .

[72]  J. Bargon,et al.  Nuclear magnetic resonance studies of homogeneous catalysis using parahydrogen: Analysis of nuclear singlet–triplet mixing as a diagnostic tool to characterize intermediates , 1993 .

[73]  M. Hall,et al.  Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 4. The oxidative Addition of Dihydrogen to d8 Square-Planar Iridium Complexes with Trans Phosphines , 1991 .

[74]  D. Weitekamp,et al.  Net NMR alignment by adiabatic transport of parahydrogen addition products to high magnetic field , 1988 .

[75]  Richard Eisenberg,et al.  Para hydrogen induced polarization in hydrogenation reactions , 1987 .

[76]  Daniel P. Weitekamp,et al.  Parahydrogen and synthesis allow dramatically enhanced nuclear alignment , 1987 .

[77]  K. Suslick High-energy processes in organometallic chemistry , 1987 .

[78]  John M. Brown,et al.  Structural characterisation in solution of intermediates in rhodium-catalysed hydroformylation and their interconversion pathways , 1987 .

[79]  M. Burk,et al.  A convenient general synthesis of trans-[IrCl(CO)(PR3)2] , 1986 .

[80]  C. A. Tolman,et al.  Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis , 1977 .

[81]  W. Mowat,et al.  Interactions of hydridocarbonyltriphenylphosphine complexes of rhodium and iridium with conjugated dienes and allene , 1971 .

[82]  C. A. Tolman,et al.  Electron donor-acceptor properties of phosphorus ligands. Substituent additivity , 1970 .

[83]  J. Collman,et al.  Acetylene Complexes of Iridium and Rhodium , 1967 .