FETI and FETI-DP Methods for Spectral and Mortar Spectral Elements: A Performance Comparison

We investigate the numerical performance of several FETI and FETI-DP algorithms, for both spectral and mortar spectral elements on geometrically conforming discretizations of the computational domain.

[1]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[2]  Andrea Toselli,et al.  A FETI Preconditioner for Two Dimensional Edge Element Approximations of Maxwell's Equations on Nonmatching Grids , 2001, SIAM J. Sci. Comput..

[3]  Olof B. Widlund,et al.  Iterative Substructuring Preconditioners For Mortar Element Methods In Two Dimensions , 1997 .

[4]  Charbel Farhat,et al.  A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems , 2000, Numerische Mathematik.

[5]  Andrea Toselli,et al.  A FETI Domain Decomposition Method for Edge Element Approximations in Two Dimensions with Discontinuous Coefficients , 2001, SIAM J. Numer. Anal..

[6]  Claudio Canuto,et al.  Stabilization of spectral methods by finite element bubble functions , 1994 .

[7]  C. Farhat,et al.  A Scalable Substructuring Method By Lagrange Multipliers For Plate Bending Problems , 1996 .

[8]  A. Toselli,et al.  A FETI Domain Decomposition Method for Maxwell''s Equations with Discontinuous Coefficients in Two Dimensions , 1999 .

[9]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .

[10]  D. Rixen,et al.  A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems , 1999 .

[11]  C. Farhat,et al.  A scalable Lagrange multiplier based domain decomposition method for time‐dependent problems , 1995 .

[12]  Y. Maday,et al.  Two different approaches for matching nonconforming grids: The Mortar Element method and the Feti Method , 1997 .

[13]  O. Widlund,et al.  FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .

[14]  Mario A. Casarin,et al.  Quasi-Optimal Schwarz Methods for the Conforming Spectral Element Discretization , 1995 .

[15]  J. Mandel,et al.  Convergence of a substructuring method with Lagrange multipliers , 1994 .

[16]  Dan Stefanica,et al.  A Numerical Study of FETI Algorithms for Mortar Finite Element Methods , 2001, SIAM J. Sci. Comput..

[17]  Antonini Macedo,et al.  Two Level Finite Element Method and its Application to the Helmholtz Equation , 1997 .

[18]  Jan Mandel,et al.  On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.

[19]  Dan Stefanica,et al.  Domain Decomposition Methods for Mortar Finite Elements , 2000 .

[20]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[21]  C. Farhat,et al.  A scalable dual-primal domain decomposition method , 2000, Numer. Linear Algebra Appl..

[22]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[23]  C. Farhat,et al.  The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .

[24]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[25]  O. Widlund,et al.  A Domain Decomposition Method With Lagrange Multipliers For Linear Elasticity , 1999 .

[26]  Olof B. Widlund,et al.  A Domain Decomposition Method with Lagrange Multipliers and Inexact Solvers for Linear Elasticity , 2000, SIAM J. Sci. Comput..