First Principles Estimation of Geochemically Important Transition Metal Oxide Properties

[1]  J. Catalano,et al.  Surface diffraction study of the hydrated hematite (1102) surface , 2007 .

[2]  F. Orr,et al.  Geoscience research for our energy future , 2008 .

[3]  E. Bylaska,et al.  First principles simulation of the bonding, vibrational, and electronic properties of the hydration shells of the high-spin Fe(3+) ion in aqueous solutions. , 2010, The journal of physical chemistry. A.

[4]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[5]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[6]  Effect of the environment on alpha-Al2O3 (0001) surface structures , 2000, Physical review letters.

[7]  G. Renaud Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering , 1998 .

[8]  Jorge Kohanoff,et al.  Phonon spectra from short non-thermally equilibrated molecular dynamics simulations , 1994 .

[9]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[10]  Aron Walsh,et al.  Electronic, structural, and magnetic effects of 3d transition metals in hematite , 2010 .

[11]  Vescovo,et al.  Empty electron states in Fe2O3 by ultraviolet inverse-photoemission spectroscopy. , 1991, Physical review. B, Condensed matter.

[12]  G. Waychunas,et al.  Hydrated goethite (α-FeOOH) (1 0 0) interface structure: Ordered water and surface functional groups , 2010 .

[13]  M. Dupuis,et al.  An ab initio model of electron transport in hematite (α-Fe2O3) basal planes , 2003 .

[14]  Eric J. Bylaska,et al.  Molecular simulation of the magnetite-water interface , 2003 .

[15]  Jürgen Hafner,et al.  First-principles calculation of the structure and magnetic phases of hematite , 2004 .

[16]  J. Leiro,et al.  High-energy-spectroscopy studies of a charge-transfer insulator: X-ray spectra of α-Fe2O3 , 1992 .

[17]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[18]  D. Newman Feasting on Minerals , 2010, Science.

[19]  M. Valiev,et al.  The Projector-Augmented Plane Wave Method Applied to Molecular Bonding , 1999 .

[20]  A. Barbier,et al.  Determination of the α-Ai2O3(0001) Surface Relaxation and Termination by Measurements of Crystal Truncation Rods , 1998 .

[21]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[22]  M. Payne,et al.  Density functional theory study of Fe(II) adsorption and oxidation on goethite surfaces , 2009, 0904.2111.

[23]  E. Bylaska,et al.  Near-Quantitative Agreement of Model-Free DFT-MD Predictions with XAFS Observations of the Hydration Structure of Highly Charged Transition-Metal Ions. , 2012, The journal of physical chemistry letters.

[24]  G. E. Matthews,et al.  Comparison of the Projector Augmented-Wave, Pseudopotential, and Linearized Augmented- Plane-Wave Formalisms for Density-Functional Calculations of Solids , 1997 .

[25]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[26]  T. Zoltai,et al.  Refinement of the hematite structure , 1966 .

[27]  Molecular Dynamics Simulations of the Goethite-water Interface , 2003 .

[28]  L. Vlček,et al.  Comment on "structure and dynamics of liquid water on rutile TiO 2(110)" , 2012 .

[29]  K. Burke Perspective on density functional theory. , 2012, The Journal of chemical physics.

[30]  I. Brown,et al.  Empirical bond-strength–bond-length curves for oxides , 1973 .

[31]  D. Tunega Theoretical Study of Properties of Goethite (α-FeOOH) at Ambient and High-Pressure Conditions , 2012 .

[32]  G. Henkelman,et al.  Hybrid density functional theory band structure engineering in hematite. , 2011, The Journal of chemical physics.

[33]  Warren E. Pickett,et al.  Pseudopotential methods in condensed matter applications , 1989 .

[34]  E. Bylaska,et al.  Calculations of the electronic structure of 3d transition metal dimers with projector augmented plane wave method , 2003 .

[35]  P. Fenter,et al.  Probing outer-sphere adsorption of aqueous metal complexes at the oxide-water interface with resonant anomalous x-ray reflectivity. , 2005, Physical review letters.

[36]  R. James,et al.  Defect energetics inα-Al2O3and rutile TiO2 , 1982 .

[37]  Matthias Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001 .

[38]  L. Katz,et al.  Surface complexation modeling I. Strategy for modeling monomer complex formation at moderate surface coverage , 1995 .

[39]  Blaise J. Thompson,et al.  Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals. , 2014, Journal of the American Chemical Society.

[40]  S. Mochizuki Electrical conductivity of α‐Fe2O3 , 1977 .

[41]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[42]  J. A. Davis,et al.  Surface complexation modeling in aqueous geochemistry , 1990 .

[43]  J. Catalano Weak interfacial water ordering on isostructural hematite and corundum (0 0 1) surfaces , 2011 .

[44]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[45]  P. Fenter,et al.  Mineral–water interfacial structures revealed by synchrotron X-ray scattering , 2004 .

[46]  J. Catalano,et al.  Interfacial water structure on the (012) surface of hematite : Ordering and reactivity in comparison with corundum , 2007 .

[47]  J. Boily Water Structure and Hydrogen Bonding at Goethite/Water Interfaces: Implications for Proton Affinities , 2012 .

[48]  G. Waychunas,et al.  Electron Small Polarons and Their Mobility in Iron (Oxyhydr)oxide Nanoparticles , 2012, Science.

[49]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[50]  D. Remler,et al.  Molecular dynamics without effective potentials via the Car-Parrinello approach , 1990 .

[51]  C. Gorski,et al.  Influence of magnetite stoichiometry on Fe(II) uptake and nitrobenzene reduction. , 2009, Environmental science & technology.

[52]  E. Ilton,et al.  Electrochemical and Spectroscopic Evidence on the One-Electron Reduction of U(VI) to U(V) on Magnetite. , 2015, Environmental science & technology.

[53]  D. Sparks,et al.  Periodic density functional theory calculations of bulk and the (010) surface of goethite , 2008, Geochemical transactions.

[54]  G. Ceder,et al.  Low intensity conduction states in FeS2: implications for absorption, open-circuit voltage and surface recombination , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  F. Herbstein How precise are measurements of unit-cell dimensions from single crystals? , 2000, Acta crystallographica. Section B, Structural science.

[56]  Nitin Kumar,et al.  Modeling Water Adsorption on Rutile (110) Using Van Der Waals Density Functional and DFT + U Methods , 2013 .

[57]  K. Tanwar,et al.  Fe(II) adsorption on hematite (0 0 0 1) , 2009 .

[58]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[59]  Peter J. Eng,et al.  Structure and reactivity of the hydrated hematite (0001) surface , 2004 .

[60]  D. Ellis,et al.  DFT studies of Cr(VI) complex adsorption on hydroxylated hematite (11¯02) surfaces , 2009 .

[61]  M. Engelhard,et al.  UO(2) Oxidative Corrosion by Nonclassical Diffusion. , 2015, Physical review letters.

[62]  R. Dovesi,et al.  On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates , 2010 .

[63]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[64]  Paul G Tratnyek,et al.  One-electron reduction potentials from chemical structure theory calculations , 2011 .

[65]  R. Gründler,et al.  Electron-Energy-Loss Spectroscopy of Different Al2O3 Modifications. I. Energy Loss Function, Dielectric Function, Oscillator Strength Sum Rule and the Quantity ε2E , 1982 .

[66]  Drew E. Latta,et al.  Influence of magnetite stoichiometry on U(VI) reduction. , 2012, Environmental science & technology.

[67]  P. larese-casanova,et al.  Fe(II) sorption on hematite: new insights based on spectroscopic measurements. , 2007, Environmental science & technology.

[68]  J. Catalano,et al.  Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH , 2010 .

[69]  E. Rueda,et al.  Structure and reactivity of synthetic Co-substituted goethites , 2008 .

[70]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[71]  Gabriel Kotliar,et al.  Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory , 2004 .

[72]  D. Sparks,et al.  Nanominerals, Mineral Nanoparticles, and Earth Systems , 2008, Science.

[73]  Hamann Generalized norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[74]  M. Scherer,et al.  Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. , 2004, Environmental science & technology.

[75]  R. Davey,et al.  The morphology of α-Al2O3 and α-Fe2O3: The importance of surface relaxation , 1987 .

[76]  E. Ilton,et al.  Competing retention pathways of uranium upon reaction with Fe(II) , 2014 .

[77]  G. Galli,et al.  Alumina(0001)/water interface structure and infrared spectra from first-principles molecular dynamics simulations , 2014 .

[78]  C. Gorski,et al.  Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral. , 2011, Environmental science & technology.

[79]  Hannes Jónsson,et al.  Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. , 2012, Physical chemistry chemical physics : PCCP.

[80]  M. S. Singh,et al.  All-electron study of gradient corrections to the local-density functional in metallic systems. , 1994, Physical review. B, Condensed matter.

[81]  Zhengcheng Zhang,et al.  Probing interfacial reactions with X-ray reflectivity and X-ray reflection interface microscopy: Influence of NaCl on the dissolution of orthoclase at pOH 2 and 85 °C , 2010 .

[82]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[83]  David M. Cwiertny,et al.  Interpreting nanoscale size-effects in aggregated Fe-oxide suspensions: Reaction of Fe(II) with Goethite , 2008 .

[84]  Eric J. Bylaska,et al.  Large‐Scale Plane‐Wave‐Based Density Functional Theory: Formalism, Parallelization, and Applications , 2011 .

[85]  D. Herting,et al.  Thermodynamics of ionization of D2O and D2PO4− , 1978 .

[86]  E. Aprá,et al.  The electronic structure of hematite {001} surfaces: Applications to the interpretation of STM images and heterogeneous surface reactions , 1996 .

[87]  A. Michaelides,et al.  Structure and dynamics of liquid water on rutile TiO2(110) , 2010 .

[88]  R. Parr,et al.  Density-functional theory of the electronic structure of molecules. , 1995, Annual review of physical chemistry.

[89]  D. Sverjensky Physical surface-complexation models for sorption at the mineral–water interface , 1993, Nature.

[90]  Lad,et al.  Photoemission study of the valence-band electronic structure in FexO, Fe3O4, and alpha -Fe2O3 single crystals. , 1989, Physical review. B, Condensed matter.

[91]  Eric J. Bylaska,et al.  Importance of Counteranions on the Hydration Structure of the Curium Ion , 2013 .

[92]  C. Gorski,et al.  Fe 2+ sorption at the Fe oxide-water interface: a revised conceptual framework , 2011 .

[93]  Eric J. Bylaska,et al.  Parallel Implementation of the Projector Augmented Plane Wave Method for Charged Systems , 2002 .

[94]  S. Kerisit Water structure at hematite-water interfaces , 2011 .

[95]  A. Kirfel,et al.  Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O , 1990 .

[96]  K. Tanwar,et al.  Density functional theory study of the clean and hydrated hematite(11¯02)surfaces , 2007 .

[97]  K. Rosso,et al.  Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal Conduction , 2008, Science.

[98]  A. Becke Perspective: Fifty years of density-functional theory in chemical physics. , 2014, The Journal of chemical physics.

[99]  Matteo Cococcioni,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[100]  Kawai,et al.  From van der Waals to metallic bonding: The growth of Be clusters. , 1990, Physical review letters.

[101]  J. Rustad,et al.  Molecular statics calculations for iron oxide and oxyhydroxide minerals: Toward a flexible model of the reactive mineral-water interface , 1996 .

[102]  S. Kennedy,et al.  The Néel temperature of fine particle goethite , 1992 .

[103]  G. Brown How Minerals React with Water , 2001, Science.

[104]  A. Barbier,et al.  Determination Of The α-Al 2 O 3 (0001) Surface Relaxation and Termination by Measurements of Crystal Truncation Rods , 1996 .

[105]  Hei Wong,et al.  Electronic structure of α-Al2O3: Ab initio simulations and comparison with experiment , 2007 .

[106]  R J Needs,et al.  Fundamental high-pressure calibration from all-electron quantum Monte Carlo calculations. , 2010, Physical review letters.

[107]  Saeki,et al.  Photoemission satellites and electronic structure of Fe2O3. , 1986, Physical review. B, Condensed matter.

[108]  S. Kerisit,et al.  Computer simulation of electron transfer at hematite surfaces , 2006 .

[109]  Julian D. Gale,et al.  Is the Calcite–Water Interface Understood? Direct Comparisons of Molecular Dynamics Simulations with Specular X-ray Reflectivity Data , 2013 .

[110]  Robert M. Hazen,et al.  Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars , 1980 .

[111]  Donald G Truhlar,et al.  Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations. , 2014, Journal of chemical theory and computation.

[112]  Barbara Kirchner,et al.  Computing vibrational spectra from ab initio molecular dynamics. , 2013, Physical chemistry chemical physics : PCCP.

[113]  J. Coey,et al.  A study of hyperfine interactions in the system (Fe1-xRhx)2O3 using the Mossbauer effect (Bonding parameters) , 1971 .

[114]  M. Gillan,et al.  Structure of the (0001) surface of α-Al2O3 from first principles calculations , 1993 .

[115]  S. Kerisit,et al.  Structure and dynamics of forsterite–scCO2/H2O interfaces as a function of water content , 2012 .

[116]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[117]  John M. Zachara,et al.  Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. , 1999, Chemical reviews.

[118]  W. Hamilton,et al.  A new approach to quantification of metamorphism using ultra-small and small angle neutron scattering. , 2009 .

[119]  K. Rosso,et al.  Structures and energies of AlOOH and FeOOH polymorphs from plane wave pseudopotential calculations , 2001 .