Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex.

We have investigated the dendritic and axonal morphology of connected pairs of L4 spiny neurons and L2/3 pyramidal cells in rat barrel cortex. The 'projection' field of the axons of L4 spiny neurons in layers 2/3, 4 and 5 has a width of 400-500 microm thereby defining an anatomical barrel-column. In layer 2/3, the averaged axonal 'projection' field of L4 spiny neurons together with the dendritic 'receptive' field of the connected L2/3 pyramidal cells form a mostly column-restricted anatomical L4-to-L2/3 'innervation domain' that extends 300-400 microm and includes mostly basal dendrites. In the L4-to-L2/3 innervation domain a single L4 spiny neuron contacts approximately 300-400 pyramidal cells while in the L4-to-L4 innervation domain it contacts approximately 200 other L4 spiny neurons. Similarly approximately 300-400 L4 spiny neurons converge onto a single pyramidal cell and approximately 200 L4 spiny neurons innervate another L4 spiny neuron. The L2/3 pyramidal cell axon has a vertical projection field spanning all cortical layers, and a long-range horizontal field in layers 2/3 (width 1,100-1,200 microm) and 5 (700-800 microm) projecting across column borders. The results suggest that the flow of excitation within a barrel-column is determined by the largely columnar confinement of the L4-to-L4 and L4-to-L2/3 innervation domains. A whisker deflection activates approximately 140 L4 spiny neurons that will generate EPSPs in most barrel-related L2/3 pyramidal cells of a principal whisker column. The translaminar synaptic transmission to layer 2/3 and the axonal projection fields of L2/3 pyramidal cells are the major determinants of the dynamic, multi-columnar map in which a single whisker deflection is represented in the cortex.

[1]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[2]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[3]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[4]  T. Woolsey,et al.  Computer‐assisted analyses of barrel neuron axons and their putative synaptic contacts , 1983, The Journal of comparative neurology.

[5]  D. Simons,et al.  Morphology of Golgi‐Cox‐impregnated barrel neurons in rat SmI cortex , 1984, The Journal of comparative neurology.

[6]  A. Grinvald,et al.  Optical mapping of electrical activity in rat somatosensory and visual cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  F. Valverde,et al.  Intrinsic neocortical organization: Some comparative aspects , 1986, Neuroscience.

[8]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[9]  J. S. McCasland,et al.  High‐resolution 2‐deoxyglucose mapping of functional cortical columns in mouse barrel cortex , 1988, The Journal of comparative neurology.

[10]  A. Burkhalter,et al.  Intrinsic connections of rat primary visual cortex: Laminar organization of axonal projections , 1989, The Journal of comparative neurology.

[11]  James R. Coleman,et al.  Development of sensory systems in mammals , 1990 .

[12]  T A Woolsey,et al.  Local intra‐ and interlaminar connections in mouse barrel cortex , 1990, The Journal of comparative neurology.

[13]  B. Connors,et al.  Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro , 1991, Neuroscience.

[14]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[15]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[16]  D. Kleinfeld,et al.  Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage‐sensitive dyes , 1996, The Journal of comparative neurology.

[17]  R. Frostig,et al.  Variability and interhemispheric asymmetry of single-whisker functional representations in rat barrel cortex. , 1996, Journal of neurophysiology.

[18]  R D Frostig,et al.  Quantitative long-term imaging of the functional representation of a whisker in rat barrel cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  T A Woolsey,et al.  Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. , 1996, Cerebral cortex.

[20]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[21]  A. Keller,et al.  Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex , 1997, Experimental Brain Research.

[22]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[23]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[24]  S. Juliano,et al.  Anatomical correlates of representational map reorganization induced by partial vibrissectomy in the barrel cortex of adult mice , 1999, Neuroscience.

[25]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[26]  K. Fox,et al.  Local cortical interactions determine the form of cortical plasticity. , 1999, Journal of neurobiology.

[27]  B. Sakmann,et al.  Developmental Switch in the Short-Term Modification of Unitary EPSPs Evoked in Layer 2/3 and Layer 5 Pyramidal Neurons of Rat Neocortex , 1999, The Journal of Neuroscience.

[28]  A. Keller,et al.  Neonatal whisker clipping alters intracortical, but not thalamocortical projections, in rat barrel cortex , 1999, The Journal of comparative neurology.

[29]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[30]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[31]  A. Keller,et al.  Thalamic-Evoked Synaptic Interactions in Barrel Cortex Revealed by Optical Imaging , 2000, The Journal of Neuroscience.

[32]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[33]  B. Sakmann,et al.  The Excitatory Neuronal Network of Rat Layer 4 Barrel Cortex , 2000, The Journal of Neuroscience.

[34]  Y Watanabe,et al.  Properties of Horizontal and Vertical Inputs to Pyramidal Cells in the Superficial Layers of the Cat Visual Cortex , 2000, The Journal of Neuroscience.

[35]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[36]  B Sakmann,et al.  Functionally Independent Columns of Rat Somatosensory Barrel Cortex Revealed with Voltage-Sensitive Dye Imaging , 2001, The Journal of Neuroscience.

[37]  T. Woolsey,et al.  Postnatal growth of intrinsic connections in mouse barrel cortex , 2001, The Journal of comparative neurology.

[38]  R. Frostig,et al.  Comparing the Functional Representations of Central and Border Whiskers in Rat Primary Somatosensory Cortex , 2001, The Journal of Neuroscience.

[39]  Asaf Keller,et al.  Functional independence of layer IV barrels. , 2002, Journal of neurophysiology.

[40]  J. Jack,et al.  Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures , 2002, The Journal of physiology.

[41]  D. Chklovskii,et al.  Geometry and Structural Plasticity of Synaptic Connectivity , 2002, Neuron.

[42]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[43]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[44]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[45]  Karel Svoboda,et al.  Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex , 2003, Neuron.

[46]  Henry Markram,et al.  Deriving physical connectivity from neuronal morphology , 2003, Biological Cybernetics.

[47]  A. Grinvald,et al.  Spatiotemporal Dynamics of Sensory Responses in Layer 2/3 of Rat Barrel Cortex Measured In Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions , 2003, The Journal of Neuroscience.

[48]  M. Kossut,et al.  Single vibrissal cortical column in the mouse labeled with 2-deoxyglucose , 2004, Experimental Brain Research.