All-vanadium redox photoelectrochemical cell: An approach to store solar energy

Abstract A highly-efficient all-vanadium photoelectrochemical storage cell has been demonstrated in this work. This storage cell takes advantage of fast electrochemical kinetics of vanadium redox couples of VO 2 + /VO 2 + and V 3 + /V 2 + , and appears as a promising alternative to photoproduction of hydrogen from water. Continuous photocharging for 25 h revealed a VO 2 + conversion rate of 0.0042 μmol/h and Faradaic efficiency of 95% without external voltage bias. The incident photon-to-current efficiency (IPCE) at 350 nm light was calculated to be ~ 12%.

[1]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[2]  Reshef Tenne,et al.  A light-variation insensitive high efficiency solar cell , 1987, Nature.

[3]  K. Domen,et al.  Kinetic Assessment and Numerical Modeling of Photocatalytic Water Splitting toward Efficient Solar Hydrogen Production , 2012 .

[4]  James R. White,et al.  Semiconductor Electrodes LVI . Principles of Multijunction Electrodes and Photoelectrosynthesis at Texas Instruments' p/n‐Si Solar Arrays , 1985 .

[5]  Maria Skyllas-Kazacos,et al.  State of charge monitoring methods for vanadium redox flow battery control , 2011 .

[6]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[7]  Dong Liu,et al.  Effect of vanadium redox species on photoelectrochemical behavior of TiO2 and TiO2/WO3 photo-electrodes , 2012 .

[8]  Qinghua Liu,et al.  High Performance Vanadium Redox Flow Batteries with Optimized Electrode Configuration and Membrane Selection , 2012 .

[9]  Hansung Kim,et al.  Analysis of the Oxidation of the V(II) by Dissolved Oxygen Using UV-Visible Spectrophotometry in a Vanadium Redox Flow Battery , 2013 .

[10]  G. R. Li,et al.  Solar rechargeable redox flow battery based on Li2WO4/LiI couples in dual-phase electrolytes , 2013 .

[11]  Matthew M. Mench,et al.  In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries , 2013 .

[12]  S. Licht A description of energy conversion in photoelectrochemical solar cells , 1987, Nature.

[13]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[14]  K. Domen,et al.  Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light , 2008 .

[15]  M. Umeno,et al.  Stable cycling behavior of the light invariant AlGaAs/Si/metal hydride solar cell , 2000 .

[16]  S. Licht,et al.  Thin Film Cadmium Chalcogenide/Aqueous Polysulfide Photoelectrochemical Solar Cells with In‐Situ Tin Storage , 1987 .

[17]  Xueping Gao,et al.  A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. , 2013, ChemSusChem.

[18]  Gareth Kear,et al.  Development of the all‐vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects , 2012 .