Leveraging the mathematics of shape for solar magnetic eruption prediction

Current operational forecasts of solar eruptions are made by human experts using a combination of qualitative shape-based classification systems and historical data about flaring frequencies. In the past decade, there has been a great deal of interest in crafting machine-learning (ML) flare-prediction methods to extract underlying patterns from a training set – e.g. a set of solar magnetogram images, each characterized by features derived from the magnetic field and labeled as to whether it was an eruption precursor. These patterns, captured by various methods (neural nets, support vector machines, etc.), can then be used to classify new images. A major challenge with any ML method is thefeaturizationof the data: pre-processing the raw images to extract higher-level properties, such as characteristics of the magnetic field, that can streamline the training and use of these methods. It is key to choose features that are informative, from the standpoint of the task at hand. To date, the majority of ML-based solar eruption methods have used physics-based magnetic and electric field features such as the total unsigned magnetic flux, the gradients of the fields, the vertical current density, etc. In this paper, we extend the relevant feature set to include characteristics of the magnetic field that are based purely on the geometry and topology of 2D magnetogram images and show that this improves the prediction accuracy of a neural-net based flare-prediction method.

[1]  Rami Qahwaji,et al.  Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares , 2009 .

[2]  坂上 貴之 書評 Computational Homology , 2005 .

[3]  F. Chazal,et al.  PersLay: A Simple and Versatile Neural Network Layer for Persistence Diagrams , 2019 .

[4]  A. Zomorodian Advances in Applied and Computational Topology , 2012 .

[5]  Stanley S. Ipson,et al.  A new technique for the calculation and 3D visualisation of magnetic complexities on solar satellite images , 2010, The Visual Computer.

[6]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs – Space-Weather HMI Active Region Patches , 2014, 1404.1879.

[7]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[8]  D. S. Bloomfield,et al.  Active Region Photospheric Magnetic Properties Derived from Line-of-Sight and Radial Fields , 2017, 1712.06902.

[9]  Komei Sugiura,et al.  Deep Flare Net (DeFN) Model for Solar Flare Prediction , 2018, 1805.03421.

[10]  Enrico Camporeale,et al.  The Challenge of Machine Learning in Space Weather: Nowcasting and Forecasting , 2019, Space Weather.

[11]  Manolis K. Georgoulis,et al.  A Comparison of Flare Forecasting Methods. II. Benchmarks, Metrics, and Performance Results for Operational Solar Flare Forecasting Systems , 2019, The Astrophysical Journal Supplement Series.

[12]  Haimin Wang,et al.  Active-Region Monitoring and Flare Forecasting – I. Data Processing and First Results , 2002 .

[13]  P. McIntosh The classification of sunspot groups , 1990 .

[14]  Xiao Yang,et al.  MAGNETIC NONPOTENTIALITY IN PHOTOSPHERIC ACTIVE REGIONS AS A PREDICTOR OF SOLAR FLARES , 2013, 1308.1181.

[15]  Y. Moon,et al.  Application of the Deep Convolutional Neural Network to the Forecast of Solar Flare Occurrence Using Full-disk Solar Magnetograms , 2018, The Astrophysical Journal.

[16]  Yanfang Zheng,et al.  Solar Flare Prediction with the Hybrid Deep Convolutional Neural Network , 2019, The Astrophysical Journal.

[17]  M. Wheatland,et al.  Nonlinear Force-Free Modeling of Coronal Magnetic Fields Part I: A Quantitative Comparison of Methods , 2006 .

[18]  N. Makarenko,et al.  Detection of new emerging magnetic flux from the topology of SOHO/MDI magnetograms , 2011 .

[19]  Kenji Fukumizu,et al.  Persistence weighted Gaussian kernel for topological data analysis , 2016, ICML.

[20]  T. Sakurai,et al.  Solar Force-free Magnetic Fields , 2012, 1208.4693.

[21]  Manolis K. Georgoulis,et al.  Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning , 2018, 1801.05744.

[22]  G. Barnes,et al.  Implementing a Magnetic Charge Topology Model for Solar Active Regions , 2005 .

[23]  Thomas R. Metcalf,et al.  Nonlinear Force-Free Modeling of Coronal Magnetic Fields. II. Modeling a Filament Arcade and Simulated Chromospheric and Photospheric Vector Fields , 2008 .

[24]  C. J. Schrijver,et al.  Nonlinear Force-free Field Modeling of a Solar Active Region around the Time of a Major Flare and Coronal Mass Ejection , 2007, 0712.0023.

[25]  R. T. James McAteer,et al.  Turbulence, complexity, and solar flares , 2009, 0909.5636.

[26]  Xin Xu,et al.  Finding cosmic voids and filament loops using topological data analysis , 2018, Astron. Comput..

[27]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[28]  Benjamin Recht,et al.  Flare Prediction Using Photospheric and Coronal Image Data , 2016, ArXiv.

[29]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[30]  L. Boucheron,et al.  PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION , 2015, 1511.01941.

[31]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[32]  K. D. Leka,et al.  PHOTOSPHERIC MAGNETIC FIELD PROPERTIES OF FLARING VERSUS FLARE-QUIET ACTIVE REGIONS. III. MAGNETIC CHARGE TOPOLOGY MODELS , 2006 .

[33]  M. Den,et al.  Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms , 2016, 1611.01791.

[34]  E. Priest,et al.  Quasi-Separatrix layers in solar flares. I. Method. , 1996 .

[35]  N. R. Sheeley,et al.  On potential field models of the solar corona , 1992 .

[36]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[37]  M. Johnson,et al.  Circulating microRNAs in Sera Correlate with Soluble Biomarkers of Immune Activation but Do Not Predict Mortality in ART Treated Individuals with HIV-1 Infection: A Case Control Study , 2015, PloS one.

[38]  Jiawei Han,et al.  Generalized Fisher Score for Feature Selection , 2011, UAI.

[39]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[40]  Frédéric Chazal,et al.  Stochastic Convergence of Persistence Landscapes and Silhouettes , 2013, J. Comput. Geom..

[41]  Tom Halverson,et al.  Topological Data Analysis of Biological Aggregation Models , 2014, PloS one.

[42]  Carolus J. Schrijver,et al.  A Characteristic Magnetic Field Pattern Associated with All Major Solar Flares and Its Use in Flare Forecasting , 2007 .

[43]  George E. Hale,et al.  The Magnetic Polarity of Sun-Spots , 1919 .

[44]  M. Wheatland A Bayesian Approach to Solar Flare Prediction , 2004, astro-ph/0403613.

[45]  M. Millhouse,et al.  CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158 , 2012, 1302.1787.

[46]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[47]  F. Woodcock,et al.  The Evaluation of Yes/No Forecasts for Scientific and Administrative Purposes , 1976 .

[48]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[49]  Jinfu Liu,et al.  Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms , 2018 .

[50]  D. Longcope,et al.  CALCULATING ENERGY STORAGE DUE TO TOPOLOGICAL CHANGES IN EMERGING ACTIVE REGION NOAA AR 11112 , 2012, 1202.0075.

[51]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[52]  P. Démoulin,et al.  Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes , 2005 .

[53]  Daria Malkova,et al.  Methods of Computational Topology for the Analysis of Dynamics of Active Regions of the Sun , 2014 .

[54]  Sung-Hong Park,et al.  Testing and Improving a Set of Morphological Predictors of Flaring Activity , 2018, Solar Physics.

[55]  Monica G. Bobra,et al.  SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM , 2014, 1411.1405.

[56]  Haimin Wang,et al.  Solar flare forecasting using sunspot-groups classification and photospheric magnetic parameters , 2010, Proceedings of the International Astronomical Union.

[57]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .

[58]  D. Longcope Topological Methods for the Analysis of Solar Magnetic Fields , 2005 .

[59]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[60]  S. Bhavsar,et al.  Analysis of the CFA “Great Wall” Using the Minimal Spanning Tree , 1996, Symposium - International Astronomical Union.

[61]  J. Rivet,et al.  A method to search for large-scale concavities in asteroid shape models , 2015 .

[62]  Franco P. Preparata,et al.  Computational Geometry , 1985, Texts and Monographs in Computer Science.

[63]  M. Crown,et al.  Validation of the NOAA Space Weather Prediction Center's solar flare forecasting look‐up table and forecaster‐issued probabilities , 2012 .

[64]  Elizabeth Bradley,et al.  Computing connectedness: An exercise in computational topology , 1998 .

[65]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[66]  Xin Huang,et al.  SHORT-TERM SOLAR FLARE LEVEL PREDICTION USING A BAYESIAN NETWORK APPROACH , 2010 .

[67]  A. R. Forrest II. Current developments in the design and production of three- dimensional curved objects - Computational geometry , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[68]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  D. S. Bloomfield,et al.  A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE “ALL-CLEAR” WORKSHOP , 2016, 1608.06319.

[70]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[71]  Moo K. Chung,et al.  Topological Data Analysis , 2012 .

[72]  Carolus J. Schrijver,et al.  A CRITICAL ASSESSMENT OF NONLINEAR FORCE-FREE FIELD MODELING OF THE SOLAR CORONA FOR ACTIVE REGION 10953 , 2009, 0902.1007.

[73]  E. Priest,et al.  Three‐dimensional magnetic reconnection without null points: 1. Basic theory of magnetic flipping , 1995 .

[74]  N. G. Makarenko,et al.  On the Prognostic Efficiency of Topological Descriptors for Magnetograms of Active Regions , 2017, Geomagnetism and Aeronomy.

[75]  L. Wasserman Topological Data Analysis , 2016, 1609.08227.

[76]  Manolis K. Georgoulis,et al.  A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems , 2019, The Astrophysical Journal.

[77]  C. Schrijver THE NONPOTENTIALITY OF CORONAE OF SOLAR ACTIVE REGIONS, THE DYNAMICS OF THE SURFACE MAGNETIC FIELD, AND THE POTENTIAL FOR LARGE FLARES , 2016, 1602.07244.

[78]  Makoto Yamada,et al.  Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams , 2018, NeurIPS.

[79]  A. Kimball,et al.  HIGH-VELOCITY BIPOLAR MOLECULAR EMISSION FROM AN AGN TORUS , 2016, 1608.02210.

[80]  J. Meiss,et al.  Computing connectedness: disconnectedness and discreteness , 2000 .

[81]  Steve Oudot,et al.  Sliced Wasserstein Kernel for Persistence Diagrams , 2017, ICML.

[82]  Michele Piana,et al.  A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction , 2017, ArXiv.

[83]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[84]  Michele Piana,et al.  Feature Ranking of Active Region Source Properties in Solar Flare Forecasting and the Uncompromised Stochasticity of Flare Occurrence , 2019, The Astrophysical Journal.

[85]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[86]  K. Graf,et al.  MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS , 2016, 1603.02271.

[87]  D. Ringach,et al.  Topological analysis of population activity in visual cortex. , 2008, Journal of vision.