Convexity of integral operators involving generalized Bessel functions

The main object of this paper is to give sufficient conditions for certain families of integral operators which are defined by means of the normalized form of the generalized Bessel functions to be convex of given order in the open unit disk. In particular cases, we find the corresponding simple conditions for integral operators involving the Bessel function, the modified Bessel function and the spherical Bessel function.

[1]  Hari M. Srivastava,et al.  Some Sufficient Conditions for Univalence of Certain Families of Integral Operators Involving Generalized Bessel Functions , 2011 .

[2]  Saminathan Ponnusamy,et al.  Starlikeness and convexity of generalized Bessel functions , 2010 .

[3]  Árpád Baricz,et al.  Generalized Bessel Functions of the First Kind , 2010 .

[4]  Basem A. Frasin,et al.  Univalence of integral operators involving Bessel functions , 2010, Appl. Math. Lett..

[5]  S. Ponnusamy,et al.  Convexity of integral transforms and function spaces , 2007 .

[6]  Árpád Baricz,et al.  Some inequalities involving generalized bessel functions , 2007 .

[7]  Maslina Darus,et al.  Convexity properties for some general integral operators on uniformly analytic functions classes , 2010, Comput. Math. Appl..

[8]  Hari M. Srivastava,et al.  An extension of the univalent condition for a family of integral operators , 2009, Appl. Math. Lett..

[9]  D. Breaz,et al.  The integral operator on the classes S_α^✻(b) and C_α(b) , 2008 .

[10]  Hari M. Srivastava,et al.  Some general univalence criteria for a family of integral operators , 2010, Appl. Math. Comput..

[11]  Árpád Baricz,et al.  Geometric properties of generalized Bessel functions , 2008, Publicationes mathematicae (Debrecen).

[12]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[13]  B. A. Frasin,et al.  SUFFICIENT CONDITIONS FOR INTEGRAL OPERATOR DEFINED BY BESSEL FUNCTIONS , 2010 .

[14]  B. Frasin SOME SUFFICIENT CONDITIONS FOR CERTAIN INTEGRAL OPERATORS , 2008 .

[15]  A Convexity Property for an Integral Operator on the Class , 2008 .

[16]  Vasile Marius Macarie,et al.  The order of convexity of some general integral operators , 2011, Comput. Math. Appl..