Diatoms: self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes.

In this review we highlight recent advances in the understanding of biosilica production, biomodification of diatom frustules and their subsequent applications in bio/chemical sensors, and as a model membrane for filtration and separation.

[1]  Kristopher A Kilian,et al.  The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. , 2009, Chemical communications.

[2]  C. Steinem,et al.  Tailored synthetic polyamines for controlled biomimetic silica formation. , 2010, Journal of the American Chemical Society.

[3]  B. Whitton,et al.  The Trophic Diatom Index: a new index for monitoring eutrophication in rivers , 1995, Journal of Applied Phycology.

[4]  Michael J. Sailor,et al.  A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface , 1999 .

[5]  R. Naik,et al.  Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. , 2004, Chemical communications.

[6]  Debra K. Gale,et al.  Self-assembly of nanostructured diatom microshells into patterned arrays assisted by polyelectrolyte multilayer deposition and inkjet printing. , 2009, Journal of the American Chemical Society.

[7]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[8]  M. Brzezinski,et al.  SILICON DEPOSITION DURING THE CELL CYCLE OF THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) DETERMINED USING DUAL RHODAMINE 123 AND PROPIDIUM IODIDE STAINING 1 , 1994 .

[9]  Yong Hwan Kim,et al.  A novel route for immobilization of proteins to silica particles incorporating silaffin domains , 2009, Biotechnology progress.

[10]  Nicolas Bremond,et al.  New tools for labeling silica in living diatoms. , 2008, The New phytologist.

[11]  Yi Li,et al.  Porous Silicon Microcavities for Biosensing Applications , 2000 .

[12]  Mark Hildebrand,et al.  Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: substructure formation and the role of microfilaments. , 2010, Journal of structural biology.

[13]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[14]  N. Kröger,et al.  Polycationic peptides from diatom biosilica that direct silica nanosphere formation. , 1999, Science.

[15]  L. Fauci,et al.  Nutrient transport and acquisition by diatom chains in a moving fluid , 2008, Journal of Fluid Mechanics.

[16]  R. Naik,et al.  Controlled formation of biosilica structures in vitro. , 2003, Chemical communications.

[17]  J. Justin Gooding,et al.  Self-Assembled Monolayers into the 21st Century: Recent Advances and Applications , 2003 .

[18]  Wei Wang,et al.  Electroluminescence and Photoluminescence from Nanostructured Diatom Frustules Containing Metabolically Inserted Germanium , 2008 .

[19]  R. Gordon,et al.  Star Trek replicators and diatom nanotechnology. , 2003, Trends in biotechnology.

[20]  Nitin Kumar,et al.  Nanoscale ZnO‐Enhanced Fluorescence Detection of Protein Interactions , 2006 .

[21]  Hermann Ehrlich,et al.  Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. , 2009, Angewandte Chemie.

[22]  A. Darzins,et al.  The promise and challenges of microalgal‐derived biofuels , 2009 .

[23]  Siddharth V. Patwardhan,et al.  Some Observations of Diatoms Under Turbulence , 2009 .

[24]  H. Ducklow,et al.  Bacterioplankton: A Sink for Carbon in a Coastal Marine Plankton Community , 1986, Science.

[25]  J. Enderlein,et al.  Fluorescence correlation spectroscopy to study diffusion through diatom nanopores. , 2009, Journal of nanoscience and nanotechnology.

[26]  David W. Tomlin,et al.  Ultrafast holographic nanopatterning of biocatalytically formed silica , 2001, Nature.

[27]  Anna-Maria M. Schmid Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy , 1994 .

[28]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[29]  J. Eijkel,et al.  Principles and applications of nanofluidic transport. , 2009, Nature nanotechnology.

[30]  B. Massey,et al.  Mechanics of Fluids , 2018 .

[31]  Gregory L. Rorrer,et al.  Photoluminescence Detection of Biomolecules by Antibody‐Functionalized Diatom Biosilica , 2009 .

[32]  Matthew B. Dickerson,et al.  Novel, Bioclastic Route to Self‐Assembled, 3D, Chemically Tailored Meso/Nanostructures: Shape‐Preserving Reactive Conversion of Biosilica (Diatom) Microshells , 2002 .

[33]  S. Lorenz,et al.  Biomimetic control of size in the polyamine-directed formation of silica nanospheres. , 2003, Angewandte Chemie.

[34]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[35]  W. Deen Hindered transport of large molecules in liquid‐filled pores , 1987 .

[36]  Stéphane Douady,et al.  Plasticity and robustness of pattern formation in the model diatom Phaeodactylum tricornutum. , 2009, The New phytologist.

[37]  K. Iyer,et al.  Regiospecific assembly of gold nanoparticles around the pores of diatoms: toward three-dimensional nanoarrays. , 2009, Journal of the American Chemical Society.

[38]  Ye Cai,et al.  Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas , 2007, Nature.

[39]  J. Keasling,et al.  Enzyme immobilization via silaffin‐mediated autoencapsulation in a biosilica support , 2009, Biotechnology progress.

[40]  C. Hamm,et al.  The evolution of advanced mechanical defenses and potential technological applications of diatom shells. , 2005, Journal of nanoscience and nanotechnology.

[41]  R. Rana,et al.  Bioinspired Silicification of Functional Materials: Fluorescent Monodisperse Mesostructure Silica Nanospheres , 2010 .

[42]  J. Xin,et al.  Preparation of a panoscopic mimic diatom from a silicon compound. , 2007, Small.

[43]  Chris Bowler,et al.  Prospects in diatom research. , 2005, Current opinion in biotechnology.

[44]  Dusan Losic,et al.  Fabrication of gold nanostructures by templating from porous diatom frustules , 2006 .

[45]  S. Lorenz,et al.  Self-Assembly of Highly Phosphorylated Silaffins and Their Function in Biosilica Morphogenesis , 2002, Science.

[46]  D. Wright,et al.  Functional analysis of the biomimetic silica precipitating activity of the R5 peptide from Cylindrotheca fusiformis. , 2003, Chemical communications.

[47]  D. Rabosky,et al.  Diversity dynamics of marine planktonic diatoms across the Cenozoic , 2009, Nature.

[48]  Sven Matthias,et al.  Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets , 2003, Nature.

[49]  A. Parker,et al.  Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate , 2007 .

[50]  Victor Smetacek,et al.  Architecture and material properties of diatom shells provide effective mechanical protection , 2003, Nature.

[51]  N. Kröger,et al.  Species-specific polyamines from diatoms control silica morphology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. B. Hibbert,et al.  Stepwise synthesis of Gly-Gly-His on gold surfaces modified with mixed self-assembled monolayers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[53]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[54]  Richard Gordon,et al.  Potential roles for diatomists in nanotechnology. , 2005, Journal of nanoscience and nanotechnology.

[55]  Nicole Poulsen,et al.  Diatoms-from cell wall biogenesis to nanotechnology. , 2008, Annual review of genetics.

[56]  J. Schultz,et al.  Hindered Diffusion in Microporous Membranes with Known Pore Geometry , 1970, Science.

[57]  D. Hutchins,et al.  New applications of a biogenic silica deposition fluorophore in the study of oceanic diatoms , 2005 .

[58]  A. Ballesteros,et al.  Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals. , 2000, Trends in biotechnology.

[59]  A channel Brownian pump powered by an unbiased external force. , 2010, The Journal of chemical physics.

[60]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[61]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[62]  H. White-Cooper,et al.  Exploitation of Diatom Frustules for Nanotechnology: Tethering Active Biomolecules , 2008 .

[63]  S. Lower,et al.  Force Measurements Between a Bacterium and Another Surface In Situ. , 2005, Advances in applied microbiology.

[64]  Chad A Mirkin,et al.  Control of nanoparticle assembly by using DNA-modified diatom templates. , 2004, Angewandte Chemie.

[65]  Nicole Poulsen,et al.  Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana. , 2007, Angewandte Chemie.

[66]  Francesc Peters,et al.  Effects of turbulence on plankton: an overview of experimental evidence and some theoretical considerations , 2000 .

[67]  R. Haugland,et al.  A novel acidotropic pH indicator and its potential application in labeling acidic organelles of live cells. , 1999, Chemistry & biology.

[68]  Effect of pore morphology on fluid flow and particle deposition on a track-etched polycarbonate membrane☆ , 2002 .

[69]  M. Sumper,et al.  Silica Biomineralisation in Diatoms: The Model Organism Thalassiosira pseudonana , 2008, Chembiochem : a European journal of chemical biology.

[70]  Robert E. Jinkerson,et al.  Genetic Engineering of Algae for Enhanced Biofuel Production , 2010, Eukaryotic Cell.

[71]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.

[72]  Nicole Poulsen,et al.  MOLECULAR GENETIC MANIPULATION OF THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE) 1 , 2006 .

[73]  Linda K. Medlin,et al.  Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision , 2004 .

[74]  David G. Mann,et al.  Biodiversity, biogeography and conservation of diatoms , 1996 .

[75]  M. Sumper,et al.  Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. , 2008, Angewandte Chemie.

[76]  James G. Mitchell,et al.  Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. , 2006, Journal of nanoscience and nanotechnology.

[77]  E. Berdalet,et al.  Effects of small-scale turbulence on the growth of two diatoms of different size in a phosphorus-limited medium , 2006 .

[78]  Richard Gordon,et al.  The Glass Menagerie: diatoms for novel applications in nanotechnology. , 2009, Trends in biotechnology.

[79]  R. Gordon,et al.  Beyond micromachining: the potential of diatoms. , 1999, Trends in biotechnology.

[80]  K. Sandhage,et al.  Thin, conformal, and continuous SnO2 coatings on three-dimensional biosilica templates through hydroxy-group amplification and layer-by-layer alkoxide deposition. , 2007, Angewandte Chemie.

[81]  B. Buszewski,et al.  The separation of uranium ions by natural and modified diatomite from aqueous solution. , 2010, Journal of hazardous materials.

[82]  N. Kröger,et al.  Silica formation in diatoms: the function of long-chain polyamines and silaffins , 2004 .

[83]  Rajesh R Naik,et al.  Enzyme immobilization in a biomimetic silica support , 2004, Nature Biotechnology.

[84]  R. Gordon,et al.  Potential of silica bodies (phytoliths) for nanotechnology. , 2009, Trends in biotechnology.

[85]  N. Kröger,et al.  Silica-precipitating Peptides from Diatoms , 2001, The Journal of Biological Chemistry.

[86]  Mario De Stefano,et al.  The Gas‐Detection Properties of Light‐Emitting Diatoms , 2008 .

[87]  Ivo Rendina,et al.  Marine diatoms as optical chemical sensors , 2005 .

[88]  S. A. Hillyard,et al.  Sustained division of the attentional spotlight , 2003, Nature.

[89]  A. G. Yodh,et al.  Entropic control of particle motion using passive surface microstructures , 1996, Nature.

[90]  M. Pahlow,et al.  Impact of cell shape and chain formation on nutrient acquisition by marine diatoms , 1997 .

[91]  Effects of Particle Size, Flow Velocity, and Cell Surface Microtopography on the Motion of Submicrometer Particles over Diatoms , 2002 .

[92]  Cheng-Kang Lee,et al.  Biosilicification of dual‐fusion enzyme immobilized on magnetic nanoparticle , 2008, Biotechnology and bioengineering.

[93]  J. Jiao,et al.  Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. , 2008, ACS nano.

[94]  P. Maddalena,et al.  Marine diatoms as optical biosensors. , 2009, Biosensors & bioelectronics.

[95]  G. Lehmann,et al.  Silica Pattern Formation in Diatoms: Species‐Specific Polyamine Biosynthesis , 2006, Chembiochem : a European journal of chemical biology.

[96]  M. de Stefano,et al.  Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter. , 2008, Acta biomaterialia.

[97]  A. Soloviev,et al.  Small-Scale Turbulence Measurements in the Thin Surface Layer of the Ocean , 1988 .

[98]  James G. Mitchell,et al.  Controlled pore structure modification of diatoms by atomic layer deposition of TiO2 , 2006 .

[99]  M. Brzezinski,et al.  A novel fluorescent silica tracer for biological silicification studies. , 2001, Chemistry & biology.

[100]  I. Gebeshuber,et al.  Tribology in biology , 2008 .

[101]  T. Kiørboe Formation and fate of marine snow: small-scale processes with large- scale implications , 2001 .

[102]  Dusan Losic,et al.  Diatomaceous Lessons in Nanotechnology and Advanced Materials , 2009 .

[103]  T. Fuhrmann,et al.  Diatoms as living photonic crystals , 2004 .

[104]  J. Addai-Mensah,et al.  Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. , 2010, Chemical communications.

[105]  M. Gretz,et al.  Extracellular matrix assembly in diatoms (Bacillariophyceae). iv. ultrastructure of Achnanthes longipes and Cymbella cistula as revealed by high‐pressure freezing/freeze substituton and cryo‐field emission scanning electron microscopy  , 2000 .

[106]  David G. Mann,et al.  Diatoms: Biology and Morphology of the Genera , 1990 .

[107]  U. Maier,et al.  Diatoms in biotechnology: modern tools and applications , 2009, Applied Microbiology and Biotechnology.

[108]  W. Bowen,et al.  Prediction of optimum membrane design: pore entrance shape and surface potential , 2002 .

[109]  Ahmed S. Al-Amoudi,et al.  Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: A review , 2010 .

[110]  Nitin Kumar,et al.  Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays , 2006 .