Conceptual design of the International Axion Observatory (IAXO)

The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4–5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few × 10−12 GeV−1 and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling gae with sensitivity — for the first time — to values of gae not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, which follows the layout of an enhanced axion helioscope, based on a purpose-built 20 m-long 8-coils toroidal superconducting magnet. All the eight 60cm-diameter magnet bores are equipped with focusing x-ray optics, able to focus the signal photons into ∼ 0.2 cm2 spots that are imaged by ultra-low-background Micromegas x-ray detectors. The magnet is built into a structure with elevation and azimuth drives that will allow for solar tracking for ∼ 12 h each day.

M. J. Pivovaroff | P. Vedrine | T. Geralis | S. Gninenko | C. Krieger | J. Kaminski | B. Gimeno | O. Limousin | I. Savvidis | S. Russenschuck | L. Walckiers | P. Brun | C. J. Hailey | F. E. Christensen | S. Caspi | I. G. Irastorza | J. Ruz | K. Kousouris | G. Cantatore | C. Nones | M. Davenport | G. Fanourakis | Y. K. Semertzidis | A. Dael | F. Caspers | P. Sikivie | E. Armengaud | T. Dafni | J. M. Carmona | E. Ferrer-Ribas | F. J. Iguaz | A. Dudarev | A. Liolios | F. T. Avignone | B. Dobrich | D. Horns | J. A. Villar | C. Eleftheriadis | K. Desch | T. Vafeiadis | S. Russenschuck | E. Armengaud | W. Wester | S. Cetin | K. Desch | H. Kate | F. Christensen | M. Davenport | T. Geralis | S. Gninenko | S. Troitsky | K. Kousouris | I. Giomataris | L. Walckiers | A. Ringwald | B. Gimeno | T. Hiramatsu | A. Derbin | V. Muratova | Héctor Mauricio Serna-Gómez | T. Papaevangelou | A. Jakobsen | G. Raffelt | F. Caspers | J. Jaeckel | G. Fanourakis | A. Dael | A. Liolios | K. Bibber | F. Avignone | I. Irastorza | J. Villar | K. Jakovčić | B. Döbrich | D. Horns | A. Dudarev | H. Silva | P. Vedrine | T. Vafeiadis | C. Eleftheriadis | O. Limousin | T. Sekiguchi | D. Hoffmann | S. Caspi | P. Brun | I. Savvidis | J. Isern | M. Pivovaroff | C. Hailey | A. Weltman | M. Karuza | G. Cantatore | A. Lindner | J. Ruz | Y. Semertzidis | J. Carmona | T. Dafni | E. Ferrer-Ribas | H. G'omez | D. Gonz'alez-D'iaz | F. Iguaz | G. Luz'on | J. Vogel | I. Shilon | M. Betz | K. Zioutas | M. Krčmar | B. Lakić | A. Tomás | P. Sikivie | J. Redondo | J. Gal'an | B. Laki'c | A. Dudarev | W. Wester | S. A. Cetin | J. Gal'an | I. Giomataris | J. A. Garc'ia | G. Luz'on | T. Papaevangelou | J. Redondo | D. Gonz'alez-D'iaz | K. Imai | H. G'omez | M. Betz | A. Diago | A. C. Jakobsen | J. K. Vogel | T. Hiramatsu | J. Isern | D. Chelouche | C. Nones | A. V. Derbin | V. N. Muratova | A. Diago | J. Jaeckel | J. Kaminski | D. H. H. Hoffmann | D. Chelouche | A. Lindner | K. van Bibber | J. G. Garza | K. Jakovvci'c | M. Karuza | B. Laki'c | I. Ortega | S. C. Yildiz | K. Zioutas | G. Raffelt | I. Dratchnev | C. Krieger | K. Saikawa | T. Sekiguchi | G. Carosi | J. Garc'ia | A. Tomas | P. Brax | G. P. Carosi | I. Dratchnev | E. Guendelman | K. Imai | J. Jaeckel | M. Kawasaki | M. Krvcmar | S. Matsuki | A. Ringwald | K. Saikawa | I. Shilon | H. Silva | H. ten Kate | S. Troitsky | A. Weltman | E. Guendelman | I. Ortega | P. Brax | M. Kawasaki | S. Matsuki | A. Tomás | S. Cetin | D. Hoffmann | P. Védrine | T. Vafeiadis | B. Döbrich | K. Desch | S. C. Yıldız

[1]  F. Haug,et al.  Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap. , 2014, Physical review letters.

[2]  F. Haug,et al.  Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap. , 2013, Physical review letters.

[3]  A. Ringwald Searching for axions and ALPs from string theory , 2012, 1209.2299.

[4]  D. C. Herrera,et al.  X-ray detection with Micromegas with background levels below 10$^{-6}$ keV$^{-1}$cm$^{-2}$s$^{-1}$ , 2013, 1312.4282.

[5]  K. Desch,et al.  InGrid-based X-ray detector for low background searches , 2013 .

[6]  B. Dobrich,et al.  Dark Matter -- a light move , 2013, 1311.5341.

[7]  D. C. Herrera,et al.  Low-background X-ray detection with Micromegas for axion research , 2013, 1310.3391.

[8]  K. Desch,et al.  GridPix as a candidate for the future of CAST , 2013 .

[9]  J. Redondo Solar axion flux from the axion-electron coupling , 2013, 1310.0823.

[10]  Alfredo Tomas Alquezar Development of time projection chambers with micromegas for Rare Event Searches , 2013 .

[11]  M. Giannotti,et al.  Probing the axion-photon coupling: phenomenological and experimental perspectives. A snowmass white paper , 2013, 1309.7035.

[12]  S. Russenschuck,et al.  The International Axion Observatory IAXO. Letter of Intent to the CERN SPS committee , 2013 .

[13]  Implications of mixed axion/neutralino dark matter for the Cosmic Frontier: a Snowmass whitepaper , 2013, 1306.2986.

[14]  S. Cetin,et al.  The quest for axions and other new light particles , 2013, 1306.2841.

[15]  David W. Miller,et al.  CAST constraints on the axion-electron coupling , 2013, 1302.6283.

[16]  William W. Zhang,et al.  THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION , 2013, Astronomical Telescopes and Instrumentation.

[17]  D. C. Herrera,et al.  Rare event searches based on Micromegas detectors: the T-REX project , 2012 .

[18]  A. Ringwald,et al.  The type IIB string axiverse and its low-energy phenomenology , 2012, 1206.0819.

[19]  D. C. Herrera,et al.  The T-REX project: Micromegas for Rare Event Searches , 2012 .

[20]  A. Ringwald,et al.  WISPy cold dark matter , 2012, 1201.5902.

[21]  S. Russenschuck,et al.  The International Axion Observatory (IAXO) , 2012, 1201.3849.

[22]  B. Kilminster,et al.  Direct search for low mass dark matter particles with CCDs , 2011, 1105.5191.

[23]  F. Haug,et al.  Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas. , 2011, Physical review letters.

[24]  L. Visinelli Axions in Cold Dark Matter and Inflation Models , 2011, 1111.5281.

[25]  H. Baer,et al.  Coupled Boltzmann calculation of mixed axion/neutralino cold dark matter production in the early universe , 2011, 1110.2491.

[26]  F. Druillole,et al.  AGET, the GET front-end ASIC, for the readout of the Time Projection Chambers used in nuclear physic experiments , 2011, 2011 IEEE Nuclear Science Symposium Conference Record.

[27]  D. C. Herrera,et al.  Status of R&D on Micromegas for Rare Event Searches: The T-REX project , 2011, 1109.4021.

[28]  F. Haug,et al.  CAST search for sub-eV mass solar axions with 3He buffer gas , 2011, 1106.3919.

[29]  S. Russenschuck,et al.  Towards a new generation axion helioscope , 2011, 1103.5334.

[30]  A. Ringwald,et al.  Light shining through walls , 2010, 1011.3741.

[31]  I. Giomataris,et al.  Radiopurity of micromegas readout planes , 2010, 1005.2022.

[32]  D. C. Herrera,et al.  Micromegas readouts for double beta decay searches , 2010, 1009.1827.

[33]  Monika Vongehr,et al.  Light weight optics made by glass thermal forming for future x-ray telescopes , 2010, Astronomical Telescopes + Instrumentation.

[34]  Marcos Bavdaz,et al.  Silicon pore x-ray optics for IXO , 2010, Astronomical Telescopes + Instrumentation.

[35]  T. Geralis,et al.  Development and performance of Microbulk Micromegas detectors , 2010 .

[36]  R. Petre,et al.  Mirror technology development for the International X-ray Observatory mission (IXO) , 2010, Astronomical Telescopes + Instrumentation.

[37]  R. Joynt And many more. , 2010, Archives of neurology.

[38]  Carsten P. Jensen,et al.  Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array , 2009, Optical Engineering + Applications.

[39]  E. Figueroa-Feliciano,et al.  Development of Position-Sensitive Transition-Edge Sensor X-Ray Detectors , 2009, IEEE Transactions on Applied Superconductivity.

[40]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[41]  R. Petre,et al.  Mirror technology development for the International X-ray Observatory mission , 2009, Optical Engineering + Applications.

[42]  L. Stodolsky,et al.  Commissioning run of the CRESST-II dark matter search , 2008, 0809.1829.

[43]  R. Hartmann,et al.  Probing eV-scale axions with CAST , 2008, 0810.4482.

[44]  H. Ten Kate The ATLAS superconducting magnet system at the Large Hadron Collider , 2008 .

[45]  Yoshiharu Namba,et al.  The NeXT x-ray telescope system: status update , 2008, Astronomical Telescopes + Instrumentation.

[46]  D. Calvet,et al.  AFTER, an ASIC for the Readout of the Large T2K Time Projection Chambers , 2008, IEEE Transactions on Nuclear Science.

[47]  A. Yamamoto,et al.  Search for solar axions with mass around 1 eV using coherent conversion of axions into photons , 2008, 0806.2230.

[48]  P. Fabbricatore,et al.  Experience Gained From the Construction, Test and Operation of the Large 4-T CMS Coil , 2008, IEEE Transactions on Applied Superconductivity.

[49]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[50]  H. T. Ten Kate ATLAS Magnet System Nearing Completion , 2008, IEEE Transactions on Applied Superconductivity.

[51]  Rafael Ballabriga,et al.  Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements , 2007 .

[52]  A. Ballarino,et al.  HTS Current Leads: Performance Overview in Different Operating Modes , 2007, IEEE Transactions on Applied Superconductivity.

[53]  J. Vieira,et al.  An improved limit on the axion–photon coupling from the CAST experiment , 2007 .

[54]  Aristotle University of Thessaloniki,et al.  The x-ray telescope of CAST , 2007, physics/0702188.

[55]  Cast collaboration An improved limit on the axion-photon coupling from the CAST experiment , 2007, hep-ex/0702006.

[56]  Shunsaku Okada,et al.  The X-Ray Telescope onboard Suzaku , 2007 .

[57]  Cora Salm,et al.  An electron-multiplying 'Micromegas' grid made in silicon wafer post-processing technology , 2006 .

[58]  G. Charpak,et al.  Micromegas in a bulk , 2005, physics/0501003.

[59]  David Smith,et al.  Development of the HEFT and NuSTAR focusing telescopes , 2006 .

[60]  Mark J. Devlin,et al.  First light of a hard-x-ray imaging experiment: the InFOCμS balloon flight , 2005, SPIE Optics + Photonics.

[61]  J. Vieira,et al.  First results from the CERN axion solar telescope. , 2005, Physical review letters.

[62]  G. Hilton,et al.  Transition-Edge Sensors , 2005 .

[63]  Christian Enss,et al.  Cryogenic particle detection , 2005 .

[64]  Cast collaboration First results from the CERN Axion Solar Telescope (CAST) , 2004, hep-ex/0411033.

[65]  C. Saclay,et al.  The Micromegas detector of the CAST experiment , 2007, physics/0702190.

[66]  Y. Giomataris,et al.  Neutrinos in a spherical box , 2003, hep-ph/0311007.

[67]  John M. Martinis,et al.  Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination , 2003 .

[68]  A. Yamamoto,et al.  Search for sub-electronvolt solar axions using coherent conversion of axions into photons in magnetic field and gas helium , 2002, astro-ph/0204388.

[69]  Martin C. Weisskopf,et al.  First Images from HERO, a Hard X-Ray Focusing Telescope , 2002 .

[70]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[71]  Martin C. Weisskopf,et al.  Chandra X-ray Observatory (CXO): overview , 1999, Astronomical Telescopes and Instrumentation.

[72]  R. Creswick,et al.  A Decommissioned LHC model magnet as an axion telescope , 1998, astro-ph/9801176.

[73]  Gerhard Derst,et al.  Mirror system for the German x-ray satellite ABRIXAS: II. Design and mirror development , 1998, Optics & Photonics.

[74]  David L. Windt,et al.  IMD—software for modeling the optical properties of multilayer films , 1998 .

[75]  Kek,et al.  Direct search for solar axions by using strong magnetic field and X-ray detectors , 1998, hep-ex/9805026.

[76]  Christopher J. Hall,et al.  X-ray calibration of the SODART flight telescopes , 1997, Optics & Photonics.

[77]  G. Charpak,et al.  MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments , 1996 .

[78]  Hideyo Kunieda,et al.  The X-ray telescope on board ASCA , 1995 .

[79]  Cameron,et al.  Search for solar axions. , 1992, Physical review letters.

[80]  S E Labov Figured grazing incidence mirrors from reheated float glass. , 1988, Applied optics.

[81]  Wolfgang Burkert,et al.  Optics For The X-Ray Imaging Concentrators Aboard The X-Ray Astronomy Satellite SAX , 1988, Optics & Photonics.

[82]  Hai-Yang Cheng The Strong CP Problem Revisited , 1988 .

[83]  R. Petre,et al.  Conical imaging mirrors for high-speed x-ray telescopes. , 1985, Applied optics.

[84]  P. Sikivie Experimental Tests of the "INVISIBLE" Axion , 1983 .

[85]  U. Briel,et al.  The Rosat mission , 1981 .

[86]  Ulrich G. Briel,et al.  The Einstein /HEAO 2/ X-ray Observatory , 1979 .

[87]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[88]  S. Weinberg A new light boson , 1978 .

[89]  R. Peccei,et al.  Constraints imposed by CP conservation in the presence of pseudoparticles , 1977 .

[90]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .