Life-stage specific transcriptomes of a migratory endoparasitic plant nematode, Radopholus similis elucidate a different parasitic and life strategy of plant parasitic nematodes

[1]  Hui Xie,et al.  Transcriptome Analysis of the Chrysanthemum Foliar Nematode, Aphelenchoides ritzemabosi (Aphelenchida: Aphelenchoididae) , 2016, PloS one.

[2]  Isheng. J. Tsai,et al.  Glycoside Hydrolase (GH) 45 and 5 Candidate Cellulases in Aphelenchoides besseyi Isolated from Bird’s-Nest Fern , 2016, PloS one.

[3]  E. Danchin,et al.  The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence , 2016, Genome Biology.

[4]  U. Rao,et al.  De novo analysis of the transcriptome of Pratylenchus zeae to identify transcripts for proteins required for structural integrity, sensation, locomotion and parasitism. , 2016, Molecular plant pathology.

[5]  E. Danchin,et al.  Horizontal Gene Transfer from Bacteria Has Enabled the Plant-Parasitic Nematode Globodera pallida to Feed on Host-Derived Sucrose. , 2016, Molecular biology and evolution.

[6]  Hui Xie,et al.  Cathepsin B Cysteine Proteinase is Essential for the Development and Pathogenesis of the Plant Parasitic Nematode Radopholus similis , 2015, International journal of biological sciences.

[7]  Hui Xie,et al.  A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis , 2015, PloS one.

[8]  Xin Huang,et al.  Molecular Identification and Functional Characterization of the Fatty Acid- and Retinoid-Binding Protein Gene Rs-far-1 in the Burrowing Nematode Radopholus similis (Tylenchida: Pratylenchidae) , 2015, PloS one.

[9]  Tanmoy Roychowdhury,et al.  De Novo Transcriptome Sequencing and Analysis of the Cereal Cyst Nematode, Heterodera avenae , 2014, PloS one.

[10]  John T Jones,et al.  Distribution and evolution of glycoside hydrolase family 45 cellulases in nematodes and fungi , 2014, BMC Evolutionary Biology.

[11]  Zhiying Wang,et al.  Transcriptomic Analysis of the Rice White Tip Nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae) , 2014, PloS one.

[12]  N. Holroyd,et al.  The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode , 2014, Genome Biology.

[13]  B. Bobay,et al.  Solution NMR studies of the plant peptide hormone CEP inform function , 2013, FEBS letters.

[14]  Johannes Helder,et al.  Top 10 plant-parasitic nematodes in molecular plant pathology. , 2013, Molecular plant pathology.

[15]  J. DeWoody,et al.  Hosts, parasites, and horizontal gene transfer. , 2013, Trends in parasitology.

[16]  Hui Xie,et al.  Differential expression of Rs-eng-1b in two populations of Radopholus similis (Tylenchida: Pratylecnchidae) and its relationship to pathogenicity , 2012, European Journal of Plant Pathology.

[17]  R. Hussey,et al.  The interaction of the novel 30C02 cyst nematode effector protein with a plant β-1,3-endoglucanase may suppress host defence to promote parasitism , 2012, Journal of experimental botany.

[18]  J. Fosu‐Nyarko,et al.  de novo analysis and functional classification of the transcriptome of the root lesion nematode, Pratylenchus thornei, after 454 GS FLX sequencing. , 2012, International journal for parasitology.

[19]  John T Jones,et al.  Functional roles of effectors of plant-parasitic nematodes. , 2012, Gene.

[20]  Alejandro Sanchez-Flores,et al.  Genomic Insights into the Origin of Parasitism in the Emerging Plant Pathogen Bursaphelenchus xylophilus , 2011, PLoS pathogens.

[21]  M. Blaxter,et al.  Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. , 2011, Journal of proteomics.

[22]  E. Danchin,et al.  Horizontal gene transfer in nematodes: a catalyst for plant parasitism? , 2011, Molecular plant-microbe interactions : MPMI.

[23]  Godelieve Gheysen,et al.  Analysis of the transcriptome of the root lesion nematode Pratylenchus coffeae generated by 454 sequencing technology. , 2011, Molecular and biochemical parasitology.

[24]  M. Mitreva,et al.  RNAi Effector Diversity in Nematodes , 2011, PLoS neglected tropical diseases.

[25]  M. F. Grossi-de-Sá,et al.  Ectopic expression of a Meloidogyne incognita dorsal gland protein in tobacco accelerates the formation of the nematode feeding site. , 2011, Plant science : an international journal of experimental plant biology.

[26]  M. Bennett,et al.  The Novel Cyst Nematode Effector Protein 19C07 Interacts with the Arabidopsis Auxin Influx Transporter LAX3 to Control Feeding Site Development1[W][OA] , 2010, Plant Physiology.

[27]  Bernard Henrissat,et al.  Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes , 2010, Proceedings of the National Academy of Sciences.

[28]  R. Hussey,et al.  Arabidopsis Spermidine Synthase Is Targeted by an Effector Protein of the Cyst Nematode Heterodera schachtii1[W][OA] , 2009, Plant Physiology.

[29]  J. P. Craig,et al.  Evidence for horizontally transferred genes involved in the biosynthesis of vitamin B(1), B(5), and B(7) in Heterodera glycines. , 2009, Journal of nematology.

[30]  M. Mitreva,et al.  Expressed sequence tags of the peanut pod nematode Ditylenchus africanus: the first transcriptome analysis of an Anguinid nematode. , 2009, Molecular and biochemical parasitology.

[31]  Graziano Pesole,et al.  Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita , 2008, Nature Biotechnology.

[32]  G. Gheysen,et al.  A family of GHF5 endo‐1,4‐beta‐glucanases in the migratory plant‐parasitic nematode Radopholus similis , 2008 .

[33]  M. Mitreva,et al.  Exploring the transcriptome of the burrowing nematode Radopholus similis , 2008, Molecular Genetics and Genomics.

[34]  G. Gheysen,et al.  Four transthyretin-like genes of the migratory plant-parasitic nematode Radopholus similis: members of an extensive nematode-specific family. , 2007, Gene.

[35]  E. H. Feinberg,et al.  Caenorhabditis elegans SID-2 is required for environmental RNA interference , 2007, Proceedings of the National Academy of Sciences.

[36]  Ruihua Dong,et al.  A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. , 2006, Molecular plant-microbe interactions : MPMI.

[37]  Ziv Bar-Joseph,et al.  STEM: a tool for the analysis of short time series gene expression data , 2006, BMC Bioinformatics.

[38]  M. Mitreva,et al.  Detection of putative secreted proteins in the plant-parasitic nematode Heterodera schachtii , 2006, Parasitology Research.

[39]  J. Vanfleteren,et al.  Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans , 2005, Experimental Gerontology.

[40]  John T Jones,et al.  A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus , 2004, FEBS letters.

[41]  Thomas J Baum,et al.  Getting to the roots of parasitism by nematodes. , 2004, Trends in parasitology.

[42]  R. Plasterk,et al.  Genes Required for Systemic RNA Interference in Caenorhabditis elegans , 2004, Current Biology.

[43]  J. T. Jones,et al.  Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis. , 2004, Gene.

[44]  J. Gogarten Gene Transfer: Gene Swapping Craze Reaches Eukaryotes , 2003, Current Biology.

[45]  Craig P. Hunter,et al.  Systemic RNAi in C. elegans Requires the Putative Transmembrane Protein SID-1 , 2002, Science.

[46]  R. Hussey,et al.  Molecular characterisation and expression of two venom allergen-like protein genes in Heterodera glycines. , 2001, International journal for parasitology.

[47]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[48]  K. Henkle-Dührsen,et al.  Antioxidant enzyme families in parasitic nematodes. , 2001, Molecular and biochemical parasitology.

[49]  J. Thomas,et al.  A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. , 2000, Genetics.

[50]  G. Fallas,et al.  Research Notes: Effect of Storage Temperature on In vitro Reproduction of Radopholus similis , 1994 .

[51]  J. Thomas,et al.  Multiple chemosensory defects in daf-11 and daf-21 mutants of Caenorhabditis elegans. , 1994, Genetics.

[52]  Q. Dan The Survival Ability of Radopholus similis in Soil , 2009 .

[53]  John M. Walker,et al.  C. elegans , 2006, Methods in Molecular Biology.

[54]  P. Abad,et al.  Molecular cloning of a cDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode Meloidogyne incognita. , 2001, Molecular plant-microbe interactions : MPMI.

[55]  N. Vibanco-Pérez,et al.  Glutathione S-transferase in helminth parasites. , 1998, Revista latinoamericana de microbiologia.

[56]  A. Burnell,et al.  Intermediary metabolism in the dauer larva of the nematode Caenorhabditis elegans— 1. Glycolysis, gluconeogenesis, oxidative phosphorylation and the tricarboxylic acid cycle , 1989 .

[57]  D. W. Dickson,et al.  Parthenogenesis in the Two Races of Radopholus similis from Florida. , 1981, Journal of nematology.

[58]  J. H. O'bannon Worldwide dissemination of Radopholus similis and its importance in crop production. , 1977, Journal of nematology.

[59]  W. Price,et al.  Dynamics of Multiplication of Radopholus Similis 1) , 1966 .

[60]  A. C. Tarjan,et al.  Longevity of Radopholus Similis (Cobb) in Host-Free Soil , 1961 .