MODEL UNCERTAINTY AND SCENARIO AGGREGATION

This paper provides a coherent method for scenario aggregation addressing model uncertainty. It is based on divergence minimization from a reference probability measure subject to scenario constraints. An example from regulatory practice motivates the definition of five fundamental criteria that serve as a basis for our method. Standard risk measures, such as value-at-risk and expected shortfall, are shown to be robust with respect to minimum divergence scenario aggregation. Various examples illustrate the tractability of our method.

[1]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[2]  Multivariate stress scenarios and solvency , 2012 .

[3]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[4]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[5]  Volker Krätschmer,et al.  Comparative and qualitative robustness for law-invariant risk measures , 2012, Finance Stochastics.

[6]  J. Kemperman,et al.  On the Optimum Rate of Transmitting Information , 1969 .

[7]  A. C. Davison,et al.  Statistical models: Name Index , 2003 .

[8]  Gerold Studer,et al.  Maximum Loss for Measurement of Market Risk , 1997 .

[9]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[10]  Jeremy Berkowitz,et al.  A Coherent Framework for Stress-Testing , 1999 .

[11]  Imre Csiszár,et al.  Systematic stress tests with entropic plausibility constraints , 2013 .

[12]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[13]  Riccardo Rebonato,et al.  Coherent Stress Testing: A Bayesian Approach to the Analysis of Financial Stress , 2010 .

[14]  M. Kratz,et al.  What is the Best Risk Measure in Practice? A Comparison of Standard Measures , 2013, 1312.1645.

[15]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[16]  Ruediger Kiesel,et al.  Conceptualizing Robustness in Risk Management , 2012 .

[17]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[18]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[19]  Rama Cont Model Uncertainty and its Impact on the Pricing of Derivative Instruments , 2004 .

[20]  P. Embrechts,et al.  Model Uncertainty and VaR Aggregation , 2013 .

[21]  Kabir K. Dutta,et al.  Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach , 2010 .

[22]  Martin Summer,et al.  A Systematic Approach to Multi-Period Stress Testing of Portfolio Credit Risk , 2010 .

[23]  Attilio Meucci,et al.  The Black-Litterman Approach: Original Model and Extensions , 2008 .

[24]  Thomas J. Latta Stress Testing in a Value at Risk Framework , 1999 .

[25]  Igor Vajda,et al.  On Divergences and Informations in Statistics and Information Theory , 2006, IEEE Transactions on Information Theory.

[26]  Robert B. Litterman,et al.  Hot Spots™ and Hedges , 1996 .

[27]  Bin Wang,et al.  Aggregation-robustness and model uncertainty of regulatory risk measures , 2015, Finance Stochastics.

[28]  Solomon Kullback,et al.  Information Theory and Statistics , 1970, The Mathematical Gazette.

[29]  P. Embrechts,et al.  An Academic Response to Basel 3.5 , 2014 .

[30]  J. Bouchaud,et al.  Impact-adjusted valuation and the criticalty of leverage , 2012 .

[31]  L. Devroye A Course in Density Estimation , 1987 .

[32]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[33]  Attilio Meucci,et al.  Fully Flexible Views: Theory and Practice , 2008, 1012.2848.

[34]  Romain Deguest,et al.  Robustness and sensitivity analysis of risk measurement procedures , 2008 .

[35]  A Coherent Aggregation Framework for Stress Testing and Scenario Analysis , 2011 .

[36]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[37]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[38]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .