Data structures for maintaining set partitions
暂无分享,去创建一个
[1] Daniel M. Yellin. Algorithms for subset testing and finding maximal sets , 1992, SODA '92.
[2] C. Mallows,et al. A Method for Comparing Two Hierarchical Clusterings , 1983 .
[3] Laurent Viennot,et al. A Synthesis on Partition Refinement: A Useful Routine for Strings, Graphs, Boolean Matrices and Automata , 1998, STACS.
[4] Steven Skiena,et al. Data Structures for Maintaining Set Partitions , 2000, SWAT.
[5] Jirí Matousek,et al. Computing Many Faces in Arrangements of Lines and Segments , 1998, SIAM J. Comput..
[6] Robert E. Tarjan,et al. Three Partition Refinement Algorithms , 1987, SIAM J. Comput..
[7] Philip A. Chou,et al. Optimal Partitioning for Classification and Regression Trees , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[8] Bernard M. E. Moret,et al. Decision Trees and Diagrams , 1982, CSUR.
[9] John E. Hopcroft,et al. An n log n algorithm for minimizing states in a finite automaton , 1971 .
[10] Kenneth H. Rosen. Handbook of Discrete and Combinatorial Mathematics , 1999 .
[11] Steven Skiena,et al. Decision trees for geometric models , 1998, Int. J. Comput. Geom. Appl..
[12] Kurt Mehlhorn,et al. Lower bounds for set intersection queries , 1993, SODA '93.
[13] Daniel M. Yellin. Representing sets with constant time equality testing , 1990, SODA '90.
[14] Yoshiko Wakabayashi. The Complexity of Computing Medians of Relations , 1998 .
[15] Ronald L. Rivest,et al. Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..
[16] David A. Landgrebe,et al. A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..
[17] Donald E. Knuth,et al. The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .
[18] William M. Rand,et al. Objective Criteria for the Evaluation of Clustering Methods , 1971 .
[19] M. Garey. Optimal Binary Identification Procedures , 1972 .
[20] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[21] S. Skiena. Interactive reconstruction via geometric probing , 1992, Proc. IEEE.
[22] Thomas C. Shermer,et al. Probing Polygons Minimally Is Hard , 1992, Comput. Geom..
[23] Robert E. Tarjan,et al. Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.
[24] Thomas Lengauer,et al. Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.
[25] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[26] Jirí Matousek,et al. Spanning trees with low crossing number , 1991, RAIRO Theor. Informatics Appl..
[27] Leonidas J. Guibas,et al. A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).
[28] Clifford Stein,et al. Introduction to Algorithms, 2nd edition. , 2001 .
[29] Rajeev Motwani,et al. Randomized algorithms , 1996, CSUR.
[30] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[31] Leonidas J. Guibas,et al. Ray shooting in polygons using geodesic triangulations , 1991, Algorithmica.
[32] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[33] Esko Ukkonen,et al. Constructing Suffix Trees On-Line in Linear Time , 1992, IFIP Congress.
[34] Steven Skiena,et al. Geometric decision trees for optical character recognition (extended abstract) , 1997, SCG '97.
[35] Dan Gusfield,et al. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .
[36] Richard Cole,et al. Dynamic LCA queries on trees , 1999, SODA '99.
[37] Pankaj K. Agarwal,et al. Partitioning arrangements of lines II: Applications , 2011, Discret. Comput. Geom..
[38] Joseph S. B. Mitchell,et al. On the Complexity of Shattering Using Arrangements , 1991 .