How arousal modulates the visual contrast sensitivity function.

Recent evidence indicates that emotion enhances contrast thresholds in subsequent visual perception (Phelps, Ling, & Carrasco, 2006) and perceptual sensitivity for low-spatial frequency but not high-spatial frequency targets (Bocanegra & Zeelenberg, 2009b). However, these studies just report responses to various frequencies at a fixed contrast level or responses to various contrasts at a fixed frequency. In the current study, we measured the full contrast sensitivity function as a function of emotional arousal in order to investigate potential interactions between spatial frequency and contrast. We used a Bayesian adaptive inference with a trial-to-trial information gain strategy (Lesmes, Lu, Baek, & Albright, 2010) and a fear-conditioned stimulus to manipulate arousal level. The spatial frequency at which people showed peak contrast sensitivity shifted to lower spatial frequencies in the arousing condition compared with the nonarousing condition and people had greater contrast sensitivity function bandwidth in the arousing than in the nonarousing condition.

[1]  A. Watson,et al.  A standard model for foveal detection of spatial contrast. , 2005, Journal of vision.

[2]  William H. Merigan,et al.  The luminance dependence of spatial vision in the cat , 1981, Vision Research.

[3]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[4]  R. Sekuler,et al.  Human aging and spatial vision. , 1980, Science.

[5]  R. Dolan,et al.  Distinct spatial frequency sensitivities for processing faces and emotional expressions , 2003, Nature Neuroscience.

[6]  K. Scherer,et al.  Spatial frequencies or emotional effects? A systematic measure of spatial frequencies for IAPS pictures by a discrete wavelet analysis , 2007, Journal of Neuroscience Methods.

[7]  R. Zeelenberg,et al.  Dissociating emotion-induced blindness and hypervision. , 2009, Emotion.

[8]  V A Billock,et al.  Evidence of spatial and temporal channels in the correlational structure of human spatiotemporal contrast sensitivity. , 1996, The Journal of physiology.

[9]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[10]  R L Woods,et al.  Spatial frequency dependent observer bias in the measurement of contrast sensitivity. , 1996, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[11]  R. Zeelenberg,et al.  Beyond attentional bias: a perceptual bias in a dot-probe task. , 2012, Emotion.

[12]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[13]  M. Masson,et al.  Using confidence intervals in within-subject designs , 1994, Psychonomic bulletin & review.

[14]  M. Carrasco,et al.  Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement , 2000, Vision Research.

[15]  K. D. Valois Spatial frequency adaptation can enhance contrast sensitivity , 1977, Vision Research.

[16]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[17]  Hans Strasburger,et al.  Assessing spatial vision — automated measurement of the contrast-sensitivity function in the hooded rat , 2000, Journal of Neuroscience Methods.

[18]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[19]  R. Zeelenberg,et al.  Auditory emotional cues enhance visual perception , 2010, Cognition.

[20]  L. Itti,et al.  Evidence for Arousal-Biased Competition in Perceptual Learning , 2012, Front. Psychology.

[21]  R. Zeelenberg,et al.  Emotion Improves and Impairs Early Vision , 2009, Psychological science.

[22]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[23]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[24]  M. Carrasco,et al.  PSYCHOLOGICAL SCIENCE Research Article Emotion Facilitates Perception and Potentiates the Perceptual Benefits of Attention , 2022 .

[25]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[26]  M. Bar,et al.  Magnocellular Projections as the Trigger of Top-Down Facilitation in Recognition , 2007, The Journal of Neuroscience.

[27]  Zhong-Lin Lu,et al.  Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method. , 2010, Journal of vision.

[28]  M. Morgan,et al.  Contrast discrimination function: spatial cuing effects. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  J. Philbeck,et al.  Hyper-Arousal Decreases Human Visual Thresholds , 2013, PLoS ONE.

[30]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[31]  H. Wilson,et al.  Spatial frequency adaptation and contrast gain control , 1993, Vision Research.

[32]  René Zeelenberg,et al.  Emotional cues enhance the attentional effects on spatial and temporal resolution , 2011, Psychonomic bulletin & review.

[33]  P. Montoya,et al.  Low spatial frequency filtering modulates early brain processing of affective complex pictures , 2007, Neuropsychologia.

[34]  R. Zeelenberg,et al.  Emotion-induced trade-offs in spatiotemporal vision. , 2011, Journal of experimental psychology. General.

[35]  Luiz Pessoa,et al.  Affective Learning Enhances Visual Detection and Responses in Primary Visual Cortex , 2008, The Journal of Neuroscience.

[36]  J. M. Foley,et al.  Spatial attention: effect of position uncertainty and number of distractor patterns on the threshold-versus-contrast function for contrast discrimination , 1998 .

[37]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[38]  Maurizio Codispoti,et al.  Spatial frequencies and emotional perception , 2013, Reviews in the neurosciences.

[39]  P. Lennie,et al.  Contrast adaptation in striate cortex of macaque , 1989, Vision Research.

[40]  Robert Sekuler,et al.  Structural modeling of spatial vision , 1984, Vision Research.

[41]  Cynthia Owsley Contrast sensitivity. , 2003, Ophthalmology clinics of North America.

[42]  Gordon E. Legge,et al.  Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision , 2011, Vision Research.

[43]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[44]  M. Carrasco Visual attention: The past 25 years , 2011, Vision Research.

[45]  M. Carrasco,et al.  Attention alters appearance , 2004, Nature Neuroscience.

[46]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[47]  A Pantle,et al.  Size-Detecting Mechanisms in Human Vision , 1968, Science.

[48]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[49]  M. Georgeson,et al.  Contrast constancy: deblurring in human vision by spatial frequency channels. , 1975, The Journal of physiology.

[50]  J A Solomon,et al.  Model of visual contrast gain control and pattern masking. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[52]  S. Kosslyn,et al.  Fear selectively modulates visual mental imagery and visual perception , 2010, Quarterly journal of experimental psychology.

[53]  Russell L. Woods Spatial frequency dependent observer bias in the measurement of contrast sensitivity , 1996 .

[54]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[55]  M. Carrasco,et al.  Covert attention affects the psychometric function of contrast sensitivity , 2002, Vision Research.

[56]  Luiz Pessoa,et al.  Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions , 2009, Proceedings of the National Academy of Sciences.

[57]  K. D. De Valois,et al.  Spatial frequency adaptation can enhance contrast sensitivity. , 1977, Vision research.

[58]  Susana T. L. Chung,et al.  Spatial-frequency characteristics of letter identification in central and peripheral vision , 2002, Vision Research.

[59]  Zhong-Lin Lu,et al.  Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors , 2003, Journal of Neuroscience Methods.

[60]  M. Ríos,et al.  The Role of Low and High Spatial Frequencies in Exogenous Attention to Biologically Salient Stimuli , 2012, PloS one.

[61]  A. Keil,et al.  Affective engagement and subsequent visual processing: effects of contrast and spatial frequency. , 2013, Emotion.

[62]  Chang-Bing Huang,et al.  qCSF in clinical application: efficient characterization and classification of contrast sensitivity functions in amblyopia. , 2010, Investigative ophthalmology & visual science.

[63]  D G Pelli,et al.  Uncertainty explains many aspects of visual contrast detection and discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[64]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.