On the equivariant log-concavity for the cohomology of the flag varieties

. We study the S n -equivariant log-concavity of the cohomology of flag varieties, also known as the coinvariant ring of S n . Using the theory of representation stability, we give computer-assisted proofs of the equivariant log-concavity in low degrees and high degrees and conjecture that it holds for all degrees. Furthermore, we make a stronger unimodal conjecture which implies the equivariant log-concavity.

[1]  Dane Miyata,et al.  Equivariant log concavity and representation stability , 2021, 2104.00715.

[2]  Joshua P. Swanson,et al.  On the distribution of the major index on standard Young tableaux , 2020, 2005.10341.

[3]  Joshua P. Swanson,et al.  Tableau posets and the fake degrees of coinvariant algebras , 2018, 1809.07386.

[4]  A. Melnikov,et al.  Unimodality of the distribution of Betti numbers for some Springer fibers , 2013 .

[5]  Jenny Wilson FI_W-modules and stability criteria for representations of the classical Weyl groups , 2013, 1309.3817.

[6]  Jordan S. Ellenberg,et al.  FI-modules and stability for representations of symmetric groups , 2012, 1204.4533.

[7]  Thomas Church,et al.  Representation theory and homological stability , 2010, 1008.1368.

[8]  M. Atiyah,et al.  Nahm’s equations, configuration spaces and flag manifolds , 2001, math/0110112.

[9]  Michael Atiyah,et al.  The geometry of point particles , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  M. Atiyah Equivariant Cohomology and Representations of the Symmetric Group , 2000, math/0012215.

[11]  Richard P. Stanley,et al.  Invariants of finite groups and their applications to combinatorics , 1979 .

[12]  Free Lie algebras,et al.  Free Lie algebras , 2015 .

[13]  M. Atiyah The geometry of classical particles , 2002 .

[14]  A. Borel Sur La Cohomologie des Espaces Fibres Principaux et des Espaces Homogenes de Groupes de Lie Compacts , 1953 .