Femtosecond laser written nanostructures in Ge-doped glasses.

We report on nanostructures induced by femtosecond laser pulses in the bulk of Germanium-doped silica glasses. For studying structural properties of the nanostructure constituents small-angle x-ray scattering and SEM served to map pore size, filling factor and periodicity. Our results show that with increasing the Ge doping concentration, the aspect ratio (transverse to inscribing laser) of nanometric pores rises while they arrange in a smaller period in contrast to nanogratings in pristine fused silica. Consequently, higher optical retardance can be obtained demonstrating the pronounced glass decomposition due to the changing network structure.

[1]  S. Nolte,et al.  Formation of femtosecond laser-induced nanogratings at high repetition rates , 2011 .

[2]  K. Sugioka,et al.  Ultrafast lasers—reliable tools for advanced materials processing , 2014, Light: Science & Applications.

[3]  Peter G. Kazansky,et al.  Ultrafast laser direct writing and nanostructuring in transparent materials , 2014 .

[4]  K. Sugioka,et al.  Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. , 2015, Optics letters.

[5]  L. Skuja Photoluminescence of Intrinsie Defects in Glassy GeO2. Twofold Coordinated Ge and Nonbridging Oxygen , 1989 .

[6]  Yan Li,et al.  [INVITED] Ultrafast laser micro-processing of transparent material , 2016 .

[7]  Peter G. Kazansky,et al.  Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass , 2011 .

[8]  R. Taylor,et al.  Applications of femtosecond laser induced self‐organized planar nanocracks inside fused silica glass , 2008 .

[9]  Andreas Tünnermann,et al.  Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™ , 2013 .

[10]  John Canning,et al.  Ultrafast nanoporous silica formation driven by femtosecond laser irradiation , 2013 .

[11]  Gregory Beaucage,et al.  Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering , 1995 .

[12]  Peter G. Kazansky,et al.  Anomalous anisotropic light scattering in Ge-doped silica glass , 1999 .

[13]  Saulius Juodkazis,et al.  Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited] , 2011 .

[14]  Andreas Tünnermann,et al.  Ultrastable bonding of glass with femtosecond laser bursts. , 2013, Applied optics.

[15]  E. Mazur,et al.  Bulk heating of transparent materials using a high-repetition-rate femtosecond laser , 2003 .

[16]  K. Itoh,et al.  Ultrafast Processes for Bulk Modification of Transparent Materials , 2006 .

[17]  Linards Skuja,et al.  Defects in oxide glasses , 2005 .

[18]  Y. Shimotsuma,et al.  Self-organized nanogratings in glass irradiated by ultrashort light pulses. , 2003, Physical review letters.

[19]  Masaaki Sakakura,et al.  Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing , 2015 .

[20]  Güttler,et al.  Detection of Interstitial Oxygen Molecules in SiO2 Glass by a Direct Photoexcitation of the Infrared Luminescence of Singlet O2. , 1996, Physical review letters.

[21]  M. Lancry,et al.  Nanoscale femtosecond laser milling and control of nanoporosity in the normal and anomalous regimes of GeO 2 -SiO 2 glasses , 2016 .

[22]  Andreas Tünnermann,et al.  The role of self-trapped excitons and defects in the formation of nanogratings in fused silica. , 2012, Optics letters.

[23]  Y. Yue,et al.  Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications , 2016 .

[24]  P. Herman,et al.  Chemical-assisted femtosecond laser writing of lab-in-fibers. , 2014, Lab on a chip.

[25]  S. Nolte,et al.  Structural evolution of nanopores and cracks as fundamental constituents of ultrashort pulse-induced nanogratings , 2014 .