Does the presence of heterotrophic bacterium Pseudomonas reactans affect basaltic glass dissolution rates

[1]  O. Pokrovsky,et al.  Effect of the heterotrophic bacterium Pseudomonas reactans on olivine dissolution kinetics and implications for CO2 storage in basalts , 2012 .

[2]  S. Gíslason,et al.  Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2 Implications for mineral sequestration of carbon dioxide , 2011 .

[3]  S. Gíslason,et al.  Do carbonate precipitates affect dissolution kinetics? 1: Basaltic glass , 2011 .

[4]  E. V. Zakharova,et al.  Microorganisms in a Disposal Site for Liquid Radioactive Wastes and Their Influence on Radionuclides , 2010 .

[5]  Wallace S. Broecker,et al.  Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project , 2010 .

[6]  R. Berner Comment: Effect of organic ligands and heterotrophic bacteria on Wollastonite dissolution kinetics , 2010, American Journal of Science.

[7]  O. Pokrovsky,et al.  Reply to Comment by R. A. Berner on “Effect of organic ligands and heterotrophic bacteria on Wollastonite dissolution kinetics”, American Journal of Science, v. 309, p. 731–772 , 2010, American Journal of Science.

[8]  E. Oelkers,et al.  Do photosynthetic bacteria have a protective mechanism against carbonate precipitation at their surfaces , 2010 .

[9]  D. Gleeson,et al.  Meter-Scale Diversity of Microbial Communities on a Weathered Pegmatite Granite Outcrop in the Wicklow Mountains, Ireland; Evidence for Mineral Induced Selection? , 2010 .

[10]  J. Roberts,et al.  Precipitation of low‐temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea , 2009, Geobiology.

[11]  B. Tebo,et al.  Utilization of Substrate Components during Basaltic Glass Colonization by Pseudomonas and Shewanella Isolates , 2009 .

[12]  E. Hutchens Microbial selectivity on mineral surfaces: possible implications for weathering processes , 2009 .

[13]  H. Sverdrup Chemical weathering of soil minerals and the role of biological processes , 2009 .

[14]  O. Pokrovsky,et al.  Effect of organic ligands and heterotrophic bacteria on wollastonite dissolution kinetics , 2009, American Journal of Science.

[15]  P. Frey-Klett,et al.  Mineral weathering by bacteria: ecology, actors and mechanisms. , 2009, Trends in microbiology.

[16]  E. Kothe,et al.  Influence of microorganisms on biotite dissolution: An experimental approach , 2009 .

[17]  Oleg S. Pokrovsky,et al.  The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry , 2009 .

[18]  J. Ganor,et al.  Organics in Water-Rock Interactions , 2009 .

[19]  E. Oelkers,et al.  An Experimental Study of the Dissolution Mechanism and Rates of Muscovite , 2008 .

[20]  Sigurdur R. Gislason,et al.  Mineral Carbonation of CO2 , 2008 .

[21]  O. Pokrovsky,et al.  Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: A surface speciation approach , 2008 .

[22]  E. Oelkers,et al.  Surface charge and zeta-potential of metabolically active and dead cyanobacteria. , 2008, Journal of colloid and interface science.

[23]  C. Keller,et al.  Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments , 2008 .

[24]  John M. Meyer,et al.  Interactions between municipal solid waste incinerator bottom ash and bacteria (Pseudomonas aeruginosa). , 2008, The Science of the total environment.

[25]  S. Gíslason,et al.  The effect of aqueous sulphate on basaltic glass dissolution rates , 2008, Mineralogical Magazine.

[26]  S. Gíslason,et al.  CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland: stratigraphy and chemical composition of the rocks at the injection site , 2008, Mineralogical Magazine.

[27]  A. Wedel,et al.  The impact of metabolic state on Cd adsorption onto bacterial cells , 2007 .

[28]  A. Lüttge,et al.  Calcite and dolomite dissolution rates in the context of microbe–mineral surface interactions , 2007 .

[29]  B. Ngwenya Enhanced adsorption of zinc is associated with aging and lysis of bacterial cells in batch incubations. , 2007, Chemosphere.

[30]  A. Jacobson,et al.  Characterization of elemental release during microbe–granite interactions at T = 28 °C , 2007 .

[31]  A. Jacobson,et al.  Characterization of elemental release during microbe-basalt interactions , 2006 .

[32]  E. V. Zakharova,et al.  Distribution and activity of microorganisms in the deep repository for liquid radioactive waste at the Siberian Chemical Combine , 2006, Microbiology.

[33]  J. Crovisier,et al.  Microbially-mediated glass dissolution and sorption of metals by Pseudomonas aeruginosa cells and biofilm. , 2006, Journal of hazardous materials.

[34]  E. Oelkers,et al.  An Experimental Investigation of the Effect of Bacillus megaterium on Apatite Dissolution , 2006 .

[35]  C. Pedrós-Alió,et al.  Marine microbial diversity: can it be determined? , 2006, Trends in microbiology.

[36]  S. Gíslason,et al.  The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates , 2006 .

[37]  L. Sigg,et al.  Thiol and metal contents in periphyton exposed to elevated copper and zinc concentrations: a field and microcosm study. , 2005, Environmental science & technology.

[38]  Eric H. Oelkers,et al.  Geochemical aspects of CO2 sequestration , 2005 .

[39]  J. Chorover,et al.  Element mobility patterns record organic ligands in soils on early Earth , 2005 .

[40]  J. Chorover,et al.  Implications of the evolution of organic acid moieties for basalt weathering over geological time , 2005 .

[41]  S. Gíslason,et al.  The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C , 2004 .

[42]  S. Gíslason,et al.  The effect of fluoride on the dissolution rates of natural glasses at pH 4 and 25°C , 2004 .

[43]  K. Edwards,et al.  Neutrophilic Iron-Oxidizing Bacteria in the Ocean: Their Habitats, Diversity, and Roles in Mineral Deposition, Rock Alteration, and Biomass Production in the Deep-Sea , 2004 .

[44]  J. Chorover,et al.  Effects of organic ligands on granite dissolution in batch experiments at pH 6 , 2004, American Journal of Science.

[45]  P. Conrad,et al.  Direct Observation of Microbial Inhibition of Calcite Dissolution , 2004, Applied and Environmental Microbiology.

[46]  P. Bennett,et al.  Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates , 2004 .

[47]  D. Kirchman,et al.  Enhanced dissolution of silicate minerals by bacteria at near-neutral pH , 1994, Microbial Ecology.

[48]  W. Gaze,et al.  The role of heterotrophic bacteria in feldspar dissolution – an experimental approach , 2003, Mineralogical Magazine.

[49]  A. Dia,et al.  Chemical weathering of basaltic lava flows undergoing extreme climatic conditions: the water geochemistry record , 2003 .

[50]  S. Gíslason,et al.  Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature , 2003 .

[51]  J. Banfield,et al.  Modification of olivine surface morphology and reactivity by microbial activity during chemical weathering , 2002 .

[52]  L. Aquilina,et al.  A Compilation of Silicon and Thirty One Trace Elements Measured in the Natural River Water Reference Material SLRS-4 (NRC-CNRC) , 2001 .

[53]  S. Gíslason,et al.  The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11 , 2001 .

[54]  Eric H. Oelkers,et al.  General kinetic description of multioxide silicate mineral and glass dissolution , 2001 .

[55]  J. Banfield,et al.  The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution , 2001 .

[56]  B. Buchardt,et al.  Ikaite Tufa Towers in Ikka Fjord, Southwest Greenland: Their Formation by Mixing of Seawater and Alkaline Spring Water , 2001 .

[57]  S. Brantley,et al.  Uptake of Trace Metals and Rare Earth Elements from Hornblende by a Soil Bacterium , 2001 .

[58]  J. Fulghum,et al.  Enhancement of Kaolinite Dissolution by an Aerobic Pseudomonas mendocina Bacterium , 2001 .

[59]  P. Bennett,et al.  Silicates, Silicate Weathering, and Microbial Ecology , 2001 .

[60]  Xiangyang Zhou,et al.  Microenvironments of pH in biofilms grown on dissolving silicate surfaces , 2000 .

[61]  S. Brantley,et al.  Rates of bacteria-promoted solubilization of Fe from minerals: a review of problems and approaches , 2000 .

[62]  B. Dupré,et al.  A Routine Method for Oxide and Hydroxide Interference Corrections in ICP‐MS Chemical Analysis of Environmental and Geological Samples , 2000 .

[63]  J. Fein,et al.  Experimental study of the effects of Bacillus subtilis on gibbsite dissolution rates under near-neutral pH and nutrient-poor conditions , 2000 .

[64]  J. Ferry,et al.  Role of bacterial siderophores in dissolution of hornblende , 2000 .

[65]  E. Valsami-Jones,et al.  Mineral dissolution by heterotrophic bacteria: principles and methodologies. , 2000 .

[66]  J. Banfield,et al.  Microbial extracellular polysaccharides and plagioclase dissolution , 1999 .

[67]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[68]  E. Oelkers,et al.  Does organic acid adsorption affect alkali-feldspar dissolution rates? , 1998 .

[69]  P. Dove,et al.  Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings , 1997 .

[70]  Jeremy B. Fein,et al.  A chemical equilibrium model for metal adsorption onto bacterial surfaces , 1997 .

[71]  E. Oelkers,et al.  The surface chemistry and structure of acid-leached albite: New insights on the dissolution mechanism of the alkali feldspars , 1997 .

[72]  K. Pedersen Microbial life in deep granitic rock , 1997 .

[73]  K. Knauer,et al.  Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae , 1997 .

[74]  Henry L. Ehrlich,et al.  HOW MICROBES INFLUENCE MINERAL GROWTH AND DISSOLUTION , 1996 .

[75]  David L. Kirchman,et al.  Laboratory evidence for microbially mediated silicate mineral dissolution in nature , 1996 .

[76]  Todd O. Stevens,et al.  Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers , 1995, Science.

[77]  H. Furnes,et al.  Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach , 1995 .

[78]  Philippe Vandevivere,et al.  Effect of microbial and other naturally occurring polymers on mineral dissolution , 1994 .

[79]  S. Welch,et al.  The effect of organic acids on plagioclase dissolution rates and stoichiometry , 1993 .

[80]  T. Beveridge,et al.  The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls , 1992, Applied and environmental microbiology.

[81]  H. Furnes,et al.  The importance of microbiological activity in the alteration of natural basaltic glass , 1992 .

[82]  V. S. Podgorskiĭ,et al.  ROLE OF BACILLUS MUCILAGINOSUS POLYSACCHARIDE IN DEGRADATION OF SILICATE MINERALS , 1990 .

[83]  D. K. Smith,et al.  A Kinetic Model for Borosilicate Glass Dissolution Based on the Dissolution Affinity of a Surface Alteration Layer , 1989 .

[84]  W. Ghiorse,et al.  Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments , 1989 .

[85]  M. E. K. Henderson,et al.  THE MICROBILOGY OF ROCKS AND WEATHERED STONES , 1963 .

[86]  R. O. Scott,et al.  SOLUBILIZATION OF MINERALS AND RELATED MATERIALS BY 2‐KETOGLUCONIC ACID‐PRODUCING BACTERIA , 1963 .

[87]  R. B. Duff,et al.  A Plate Method for studying the Breakdown of Synthetic and Natural Silicates by Soil Bacteria , 1960, Nature.

[88]  S. Gíslason,et al.  Mineral Carbonation of CO 2 , 2022 .