GENERALIZATION OF GMM TO A CONTINUUM OF MOMENT CONDITIONS

This paper proposes a version of the generalized method of moments procedure that handles both the case where the number of moment conditions is finite and the case where there is a continuum of moment conditions. Typically, the moment conditions are indexed by an index parameter that takes its values in an interval. The objective function to minimize is then the norm of the moment conditions in a Hilbert space. The estimator is shown to be consistent and asymptotically normal. The optimal estimator is obtained by minimizing the norm of the moment conditions in the reproducing kernel Hilbert space associated with the covariance. We show an easy way to calculate this estimator. Finally, we study properties of a specification test using overidentifying restrictions. Results of this paper are useful in many instances where a continuum of moment conditions arises. Examples include efficient estimation of continuous time regression models, cross-sectional models that satisfy conditional moment restrictions, and scalar diffusion processes.

[1]  V. Hutson Integral Equations , 1967, Nature.

[2]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[3]  E. Parzen STATISTICAL INFERENCE ON TIME SERIES BY RKHS METHODS. , 1970 .

[4]  Thomas Kailath,et al.  RKHS approach to detection and estimation problems-I: Deterministic signals in Gaussian noise , 1971, IEEE Trans. Inf. Theory.

[5]  G. Wahba Convergence rates of certain approximate solutions to Fredholm integral equations of the first kind , 1973 .

[6]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[7]  A. Papoulis,et al.  RKHS Approach to Detection and Estimation Problems-Part IV: Non-Gaussian Detection , 1973 .

[8]  G. Wahba,et al.  Generalized Inverses in Reproducing Kernel Spaces: An Approach to Regularization of Linear Operator Equations , 1974 .

[9]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[10]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[11]  Calyampudi R. Rao Handbook of statistics , 1980 .

[12]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[13]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[14]  S. Portnoy Asymptotic behavior of M-estimators of p regression parameters when p , 1985 .

[15]  Y. Kutoyants,et al.  Parameter estimation for stochastic processes , 1984 .

[16]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[17]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[18]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[19]  G. Chamberlain Asymptotic efficiency in estimation with conditional moment restrictions , 1987 .

[20]  Peter Breeze,et al.  Point Processes and Their Statistical Inference , 1991 .

[21]  Herman J. Bierens,et al.  A consistent conditional moment test of functional form , 1990 .

[22]  Whitney K. Newey,et al.  EFFICIENT INSTRUMENTAL VARIABLES ESTIMATION OF NONLINEAR MODELS , 1990 .

[23]  Alan F. Karr,et al.  Point Processes and Their Statistical Inference , 1991 .

[24]  H. Bierens,et al.  On the Limit Behavior of a Chi-Square Type Test if the Number of Conditional Moments Tested Approaches Infinity , 1994, Econometric Theory.

[25]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[26]  P. Hansen Numerical tools for analysis and solution of Fredholm integral equations of the first kind , 1992 .

[27]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[28]  L. Hansen,et al.  Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes , 1993 .

[29]  C. W. Groetsch,et al.  Inverse Problems in the Mathematical Sciences , 1993 .

[30]  Masao Ogaki,et al.  17 Generalized method of moments: Econometric applications , 1993 .

[31]  J. Davidson Stochastic Limit Theory , 1994 .

[32]  Halbert L. White, Jr.,et al.  CENTRAL LIMIT AND FUNCTIONAL CENTRAL LIMIT THEOREMS FOR HILBERT-VALUED DEPENDENT HETEROGENEOUS ARRAYS WITH APPLICATIONS , 1997, Econometric Theory.

[33]  Timothy G. Conley,et al.  Short-term interest rates as subordinated diffusions , 1997 .

[34]  R. Koenker,et al.  GMM inference when the number of moment conditions is large , 1999 .