Metal versus dielectric back reflector for thin‐film Si solar cells with impact of front electrode surface texture

Thin‐film Si solar cells employ a back reflector (BR) for a more efficient use of the long wavelength light. Here, we have carried out a cross evaluation of metal (Ag‐based) and dielectric (white paint‐based) BR designs. Conclusive results have been reached regarding the most suitable BR type depending on the front electrode morphology, both with crater‐like and pyramidal texture. The ZnO/Ag BR is found to be optically more efficient because of improved light trapping, although the gain tends to vanish for rougher front electrodes. Thanks to non‐conventional Raman intensity measurements, this dependence on the front texture has been linked to the different weight of front and back interfaces in the light trapping process for the different morphologies. With rougher substrates, because the minor optical gain is accompanied by sputter‐induced electronic deterioration of the solar cell during the ZnO buffer layer deposition, the white paint‐based BR design is preferred. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  B. Mereu,et al.  Record 12.34% stabilized conversion efficiency in a large area thin‐film silicon tandem (MICROMORPH™) module , 2015 .

[2]  C. Ballif,et al.  Silver versus white sheet as a back reflector for microcrystalline silicon solar cells deposited on LPCVD‐ZnO electrodes of various textures , 2015 .

[3]  C. Agert,et al.  Cost-effective nanostructured thin-film solar cell with enhanced absorption , 2014 .

[4]  M. Meier,et al.  Micromorph silicon solar cell optical performance: Influence of intermediate reflector and front electrode surface texture , 2014 .

[5]  M. Kondo,et al.  11.0%-Efficient Thin-Film Microcrystalline Silicon Solar Cells With Honeycomb Textured Substrates , 2014, IEEE Journal of Photovoltaics.

[6]  A. Fejfar,et al.  Light trapping in thin-film solar cells measured by Raman spectroscopy , 2014 .

[7]  M. Konagai,et al.  Novel application of MgF2 as a back reflector in a-SiOx:H thin-film solar cells , 2014 .

[8]  M. Meier,et al.  Disorder improves nanophotonic light trapping in thin-film solar cells , 2014 .

[9]  M. Stuckelberger,et al.  Thin-Film Silicon Triple-Junction Solar Cells on Highly Transparent Front Electrodes With Stabilized Efficiencies up to 12.8% , 2014, IEEE Journal of Photovoltaics.

[10]  B. Rech,et al.  Achievements and challenges in thin film silicon module production , 2013 .

[11]  M. Meier,et al.  Investigation of n-SiOx/Ag as Advanced Back Reflector for Superstrate-Type Micromorph Solar Cells on Different Front TCO , 2013 .

[12]  P. Babál,et al.  Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells , 2013 .

[13]  D. W. Sheel,et al.  High-performance tandem silicon solar cells on F:SnO2 , 2013 .

[14]  Christophe Ballif,et al.  High‐efficiency microcrystalline silicon single‐junction solar cells , 2013 .

[15]  F. Mongeot,et al.  Self-organized broadband light trapping in thin film amorphous silicon solar cells , 2013, Nanotechnology.

[16]  L. Fanni,et al.  Thin-film silicon solar cells applying optically decoupled back reflectors , 2013 .

[17]  T. Polichetti,et al.  Broadband near-field effects for improved thin film Si solar cells on randomly textured substrates , 2013 .

[18]  P. D. Veneri,et al.  Improved micromorph solar cells by means of mixed‐phase n‐doped silicon oxide layers , 2013 .

[19]  M. Zeman,et al.  The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells , 2013 .

[20]  C. Ballif,et al.  Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering , 2012 .

[21]  J. Muller,et al.  Gen5 production tool for light management textures , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[22]  V. Smirnov,et al.  Light scattering at textured back contacts for n-i-p thin-film silicon solar cells , 2012 .

[23]  Yi Cui,et al.  Light trapping in solar cells: can periodic beat random? , 2012, ACS nano.

[24]  Christophe Ballif,et al.  Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. , 2012, Nano letters.

[25]  C. Battaglia,et al.  Optimization of ZnO Front Electrodes for High-Efficiency Micromorph Thin-Film Si Solar Cells , 2012, IEEE Journal of Photovoltaics.

[26]  A. Purkrt,et al.  Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential , 2011 .

[27]  J. Hüpkes,et al.  Novel etch process to tune crater size on magnetron sputtered ZnO:Al , 2011 .

[28]  M. Zeman,et al.  Modeling and optimization of white paint back reflectors for thin-film silicon solar cells , 2010 .

[29]  A. Zindel,et al.  Oerlikon Solar’s Key Performance Drivers to Grid Parity , 2010 .

[30]  J. Hüpkes,et al.  New Texture Etching of Zinc Oxide: Tunable Light Trapping for Si Thin Film Solar Cells , 2010 .

[31]  M. Kondo,et al.  Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties , 2010 .

[32]  Ihsanul Afdi Yunaz,et al.  ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells , 2010 .

[33]  J. Owens,et al.  Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells , 2009 .

[34]  M. Addonizio,et al.  Surface morphology and light scattering properties of plasma etched ZnO:B films grown by LP-MOCVD for silicon thin film solar cells , 2009 .

[35]  C. Ballif,et al.  Plasmonic absorption in textured silver back reflectors of thin film solar cells , 2008 .

[36]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[37]  Bernd Rech,et al.  The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells , 2007 .

[38]  Arvind Shah,et al.  Rough ZnO Layers by LP-CVD Process and their Effect in Improving Performances of Amorphous and Microcrystalline Silicon Solar Cells , 2006 .

[39]  A. Shah,et al.  High-Efficiency P-I-N Microcrystalline and Micromorph Thin Film Silicon Solar Cells Deposited on LPCVD Zno Coated Glass Substrates , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[40]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[41]  R. Street,et al.  Defects in bombarded amorphous silicon , 1979 .